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Chapter 1

Introduction

1.1 What Zelig and R Do

Zelig1 is an easy-to-use program that can estimate and help interpret the results of an enor-
mous and growing range of statistical models. It literally is “everyone’s statistical software”
because Zelig’s unified framework incorporates everyone else’s (R) code. We also hope it will
become “everyone’s statistical software” for applications, and we have designed Zelig so that
anyone can use it or add their models to it.

When you are using Zelig, you are also using R, a powerful statistical software language.
You do not need to learn R separately, however, since this manual introduces you to R
through Zelig, which simplifies R and reduces the amount of programming knowledge you
need to get started. Because so many individuals contribute different packages to R (each
with their own syntax and documentation), estimating a statistical model can be a frustrating
experience. Users need to know which package contains the model, find the modeling com-
mand within the package, and refer to the manual page for the model-specific arguments. In
contrast, Zelig users can skip these start-up costs and move directly to data analyses. Using
Zelig’s unified command syntax, you gain the convenience of a packaged program, without
losing any of the power of R’s underlying statistical procedures.

In addition to generalizing R packages and making existing methods easier to use, Zelig
includes infrastructure that can improve all existing methods and R programs. Even if you
know R, using Zelig greatly simplifies your work. It mimics the popular Clarify program for
Stata (and thus the suggestions of King, Tomz, and Wittenberg, 2000) by translating the
raw output of existing statistical procedures into quantities that are of direct interest to re-
searchers. Instead of trying to interpret coefficients parameterized for modeling convenience,
Zelig makes it easy to compute quantities of real interest: probabilities, predicted values,
expected values, first differences, and risk ratios, along with confidence intervals, standard
errors, or full posterior (or sampling) densities for all quantities. Zelig extends Clarify by

1Zelig is named after a Woody Allen movie about a man who had the strange ability to become the
physical reflection of anyone he met — Scottish, African-American, Indian, Chinese, thin, obese, medical
doctor, Hassidic rabbi, anything — and thus to fit well in any situation.
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seamlessly integrating an option for bootstrapping into the simulation of quantities of inter-
est. It also integrates a full suite of nonparametric matching methods as a preprocessing step
to improve the performance of any parametric model for causal inference (see MatchIt). For
missing data, Zelig accepts multiply imputed datasets created by Amelia (see King, Honaker,
Joseph, and Scheve, 2001) and other programs, allowing users to analyze them as if they
were a single, fully observed dataset. Zelig outputs replication data sets so that you (and if
you wish, anyone else) will always be able to replicate the results of your analyses (see King,
1995). Several powerful Zelig commands also make running multiple analyses and recoding
variables simple.

Using R in combination with Zelig has several advantages over commercial statistical
software. R and Zelig are part of the open source movement, which is roughly based on
the principles of science. That is, anyone who adds functionality to open source software or
wishes to redistribute it (legally) must provide the software accompanied by its source free of
charge.2 If you find a bug in open source software and post a note to the appropriate mailing
list, a solution you can use will likely be posted quickly by one of the thousands of people
using the program all over the world. Since you can see the source code, you might even
be able to fix it yourself. In contrast, if something goes wrong with commercial software,
you have to wait for the programmers at the company to fix it (and speaking with them is
probably out of the question), and wait for a new version to be released.

We find that Zelig makes students and colleagues more amenable to using R, since the
startup costs are lower, and since the manual and software are relatively self-contained.
This manual even includes an appendix devoted to the basics of advanced R programming,
although you will not need it to run most procedures in Zelig. A large and growing fraction
of the world’s quantitative methodologists and statisticians are moving to R, and the base
of programs available for R is quickly surpassing all alternatives. In addition to built-in
functions, R is a complete programming language, which allows you to design new functions
to suit your needs. R has the dual advantage that you do not need to understand how to
program to use it, but if it turns out that you want to do something more complicated, you
do not need to learn another program. In addition, methodologists all over the world add
new functions all the time, so if the function you need wasn’t there yesterday, it may be
available today.

1.2 Getting Help

You may find documentation for Zelig on-line (and hence must be on-line to access it). If
you are unable to connect to the Internet, we recommend that you print the pdf version of
this document for your reference.

If you are on-line, you may access comprehensive help files for Zelig commands and for
each of the models. For example, load the Zelig library and then type at the R prompt:

> help.zelig(command) # For help with all zelig commands.

2As specified in the GNU General License v. 2 http://www.gnu.org/copyleft.
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> help.zelig(logit) # For help with the logit model.

In addition, help.zelig() searches the manual pages for R in addition to the Zelig specific
pages. On certain rare occasions, the name of the help topic in Zelig and in R are identical.
In these cases, help.zelig() will return the Zelig help page by default. If you wish to access
the R help page, you should use help(topic).

In addition, built-in examples with sample data and plots are available for each model.
For example, type demo(logit) to view the demo for the logit model. Commented code for
each model is available under the examples section of each model reference page.

Please direct inquiries and problems about Zelig to our listserv at zelig@lists.gking.harvard.edu.
We suggest you subscribe to this mailing list while learning and using Zelig: go to http:

//lists.hmdc.harvard.edu/index.cgi?info=zelig. (You can choose to receive email in
digest form, so that you will never receive more than one message per day.) You can also
browse or search our archive of previous messages before posting your query.

1.3 How to Cite Zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

To refer to a particular Zelig model, please refer to the “how to cite” portion at the end
of each model documentation section.
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Chapter 2

Installation

To use Zelig, you must install the statistical program R (if it is not already installed), the
Zelig package, and some R libraries (coda, MCMCpack, sandwich, VGAM, and zoo).

Note: In this document, > denotes the R prompt.

If You Know R

We recommend that you launch R and type

> source("http://gking.harvard.edu/zelig/install.R")

> library(Zelig)

then proceed to Section 4.1.1. For Windows R, you may edit the Rprofile file to load Zelig
automatically at launch (after which you will no longer need to type library(Zelig) at
startup). Simply add the line:

options(defaultPackages = c(getOption("defaultPackages"), "Zelig"))

If You Are New to R

If you are new to R, we recommend that you read the following section on installation
procedures as well as the overview of R syntax and usage in Section 6.

This distribution works on a variety of platforms, including Windows (see Section 2.1),
MacOSX (see Section 2.2), and Linux (see Section 2.3). Alternatively, you may access R
from your PC using a terminal window or an X-windows tunnel to a Linux or Unix server
(see Section 2.3). Most servers have R installed; if not, contact your network administrator.

There are advantages and disadvantages to each type of installation. On a personal
computer, R is easier to install and launch. Using R remotely on a server requires a bit more
set-up, but does not tie up your local CPU, and allows you to take advantage of the server’s
speed.
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2.1 Windows

Installing R

Go to the Comprehensive R Archive Network website (http://www.r-project.org) and
download the latest installer for Windows at http://cran.us.r-project.org/bin/windows/
base/ Double-click the .exe file to launch the R installer. We recommend that you accept
the default installation options if this your first installation.

Installing Zelig

Once R is installed, you must install the Zelig and VGAM packages. There are three ways
to do this.

1. We recommend that you start R and then type:

> source("http://gking.harvard.edu/zelig/install.R")

> library(Zelig)

2. Alternatively, you may install each component package individually in R:

> install.packages("Zelig")

> install.packages("zoo")

> install.packages("sandwich")

> install.packages("MCMCpack")

> install.packages("coda")

> install.packages("lattice")

> install.packages("mvtnorm")

> install.packages("VGAM")

> install.packages("sna")

> install.packages("systemfit")

> install.packages("nnet")

> install.packages("gee")

> install.packages("mgcv")

> library(Zelig)

Zelig will load the optional libraries whenever their functions are needed; it is not
necessary to load any package other than Zelig at startup.

3. Alternatively, you may use the drop down menus to install Zelig. This requires four
steps.

(a) Go to the Zelig website and and download the latest release of Zelig. The VGAM,
MCMCpack, coda, zoo, and sandwich packages are available from CRAN. Store
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these .zip files in your R program directory. For example, the default R program
directory is C:\Program Files\R\R-2.5.1\.1

(b) Start R. From the drop-down menus, select the “Packages” menu and then the
“Install Files from Local Zip Files” option.

(c) A window will pop up, allowing you to select one of the downloaded files for
installation. There is no need to unzip the files prior to installation. Repeat and
select the other downloaded file for installation.

(d) At the R prompt, type library(Zelig) to load the functionality described in this
manual. Note that Zelig will automatically load the other libraries as necessary.

4. An additional recommended but optional step is to set up R to load Zelig automatically
at launch. (If you skip this step, you must type library(Zelig) at the beginning of
every R session.) To automate this process, edit the Rprofile file located in the R
program subdirectory (C:\Program Files\R\R-2.5.1\etc\ in our example). Using a
text editor such as Windows notepad, add the following line to the Rprofile file:

options(defaultPackages = c(getOption("defaultPackages"), "Zelig"))

Zelig is distributed under the GNU General Public License, Version 2. After installa-
tion, the source code is located in your R library directory, which is by default C:\Program
Files\R\R-2.5.1\library\Zelig\.

Updating Zelig

There are two ways to update Zelig.

1. We recommend that you periodically update Zelig at the R prompt by typing:

> update.packages()

> library(Zelig)

2. Alternatively, you may use the procedure outlined in Section 3a to periodically update
Zelig. Simply download the latest .zip file and follow the four steps.

2.2 MacOS X

Installing R

If you are using MacOS X, you may install the latest version of R (2.5.1 at this time) from
the CRAN website http://cran.us.r-project.org/bin/macosx/. At this time, Zelig is not
supported for R on MacOS 8.6 through 9.x.

1Note that when updating R to the latest release, the installer does not delete previous versions from your
C:\Program Files\R\ directory. In this example, the subdirectory \R-2.5.1\ stores R version 2.5.1. Thus,
if you have a different version of R installed, you should change the last part of the R program directory file
path accordingly.
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Installing Zelig

Once R is installed, you must install the Zelig and VGAM packages. There are several ways
to do this.

1. For RAqua:

(a) We recommend that you start R, and then type:

> source("http://gking.harvard.edu/zelig/install.R")

> library(Zelig)

(You may ignore the warning messages, unless they say “Non-zero exit status”.)

(b) Alternatively, to avoid the warning messages, you need to install each package
individually and specify the specific installation path:

> install.packages("Zelig", lib = "~/Library/R/library")

> install.packages("zoo", lib = "~/Library/R/library")

> install.packages("sandwich", lib = "~/Library/R/library")

> install.packages("MCMCpack", lib = "~/Library/R/library")

> install.packages("coda", lib = "~/Library/R/library")

> install.packages("lattice", lib = "~/Library/R/library")

> install.packages("mvtnorm", lib = "~/Library/R/library")

> install.packages("VGAM", lib = "~/Library/R/library")

> install.packages("sna", lib = "~/Library/R/library")

> install.packages("systemfit", lib = "~/Library/R/library")

> install.packages("nnet", lib = "~/Library/R/library")

> install.packages("gee", lib = "~/Library/R/library")

> install.packages("mgcv", lib = "~/Library/R/library")

> library(Zelig)

where ~/Library/R/library is the default local library directory. Zelig will load
the other libraries whenever their functions are needed; it is not necessary to load
these packages at startup.

(c) Alternatively, you may use the drop down menus to install Zelig. This requires
three steps.

i. Go to the Zelig website and download the latest release of Zelig. The VGAM,
MCMCpack, coda, zoo, and sandwich packages are available from CRAN.
Save these .tar.gz files in a convenient place.

ii. Start R. From the drop-down menus, select the “Packages” menu and then
the “Install Files from Local Files” option.

iii. A window will pop up, allowing you to select the one of the downloaded
files for installation. There is no need to unzip the files prior to installation.
Repeat and select the other downloaded file for installation.
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2. For command line R:

(a) Before installing command line R, you need to create a local R library directory.
If you have done so already, you may skip to the next step. Otherwise, at the
terminal prompt in your home directory, type:

% mkdir ~/Library/R ~/Library/R/library

(b) Modify your configuration file to identify ~/Library/R/library as your R library
directory. There are two ways of doing this:

i. Open the .Renviron file (or create one, if you don’t have one) and add the
following line:

R_LIBS = "~/Library/R/library"

ii. Alternatively, you may modify your shell configuration file. For a Bash shell,
open your .bashrc file and add the following line:

export R_LIBS="$HOME/Library/R/library"

(c) Start R and at the prompt, type:

> source("http://gking.harvard.edu/zelig/install.R")

> library(Zelig)

(You may ignore the warning messages, unless they say “Non-zero exit status”.)

(d) Alternatively, to avoid the warning messages, you need to install each component
package separately and specify the installation path:

> install.packages("Zelig", lib = "~/Library/R/library")

> install.packages("zoo", lib = "~/Library/R/library")

> install.packages("sandwich", lib = "~/Library/R/library")

> install.packages("MCMCpack", lib = "~/Library/R/library")

> install.packages("coda", lib = "~/Library/R/library")

> install.packages("lattice", lib = "~/Library/R/library")

> install.packages("mvtnorm", lib = "~/Library/R/library")

> install.packages("VGAM", lib = "~/Library/R/library")

> install.packages("sna", lib = "~/Library/R/library")

> install.packages("systemfit", lib = "~/Library/R/library")

> install.packages("nnet", lib = "~/Library/R/library")

> install.packages("gee", lib = "~/Library/R/library")

> install.packages("mgcv", lib = "~/Library/R/library")

> library(Zelig)

Although the lib argument is optional, we recommend that you set it to the
default RAqua directory ("~/Library/R/library"), in case you later decide to
install the RAqua GUI (which has a different default directory).
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At the R prompt, type library(Zelig) to load the functionality described in this man-
ual. Note that Zelig will automatically load the other packages as necessary.

Zelig is distributed under the GNU General Public License, Version 2. After installation,
the source code is located in your R library directory, ~/Library/R/library/Zelig/.

Updating Zelig

There are two ways to update Zelig.

1. We recommend that you start R and, at the R prompt, type:

> update.packages()

2. Alternatively, you may remove an old version by command by typing R CMD REMOVE

Zelig at the terminal prompt. Then download and reinstall the package using the
installation procedures Section 2.2 outlined above.

2.3 UNIX and Linux

Installing R

Type R at the terminal prompt (which we denote as % in this section) to see if R is available.
(Typing q() will enable you to quit.) If it is installed, proceed to the next section. If it is
not installed and you are not the administrator, contact that individual, kindly request that
they install R on the server, and continue to the next section. If you have administrator
privileges, you may download the latest release at the CRAN website. Although installation
varies according to your Linux distribution, we provide an example for Red Hat Linux 9.0
as a guide:

1. Log in as root.

2. Download the appropriate binary file for Red Hat 9 from CRAN. For example, for Red
Hat 9 running on the Intel 386 platform, go to http://cran.r-project.org/bin/

linux/.

3. Type the following command at the terminal prompt:
% rpm -ivh R-2.5.1-1.i386.rpm

Installing Zelig

Before installing Zelig, you need to create a local R library directory. If you have done so
already, you can skip to Section 2.3. If not, you must do so before proceeding because most
users do not have authorization to install programs globally. Suppose we want the directory
to be ~/.R/library. At the terminal prompt in your home directory, type:
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% mkdir ~/.R ~/.R/library

Now you are ready to install Zelig. There are two ways to proceed.

1. Recommended procedure:

(a) Open the ~ /.Renviron file (or create it if it does not exist) and add the following
line:

R_LIBS = "~/.R/library"

You only need to perform this step once.

(b) Start R. At the R prompt, type:

> source("http://gking.harvard.edu/zelig/install.R")

> library(Zelig)

(You may ignore the warning messages, unless they say “Non-zero exit status”.)

(c) Alternatively, you can avoid the warning messages by installing each component
package separately and specifying the installation path:

> install.packages("Zelig", lib = "~/Library/R/library")

> install.packages("zoo", lib = "~/Library/R/library")

> install.packages("sandwich", lib = "~/Library/R/library")

> install.packages("MCMCpack", lib = "~/Library/R/library")

> install.packages("coda", lib = "~/Library/R/library")

> install.packages("lattice", lib = "~/Library/R/library")

> install.packages("mvtnorm", lib = "~/Library/R/library")

> install.packages("VGAM", lib = "~/Library/R/library")

> install.packages("sna", lib = "~/Library/R/library")

> install.packages("systemfit", lib = "~/Library/R/library")

> install.packages("nnet", lib = "~/Library/R/library")

> install.packages("gee", lib = "~/Library/R/library")

> install.packages("mgcv", lib = "~/Library/R/library")

> library(Zelig)

(d) Finally, create a .Rprofile file in your home directory, containing the line:

library(Zelig)

This will load Zelig every time you start R.

2. Alternatively:

(a) Add the local R library directory that you created above (~ /.R/library in the
example) to the environmental variable R_LIBS.

(b) Download the latest bundles for Unix from the Zelig website, and (for the VGAM,
MCMCpack, coda, sandwich, and zoo packages) from the CRAN website.
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(c) If XX is the current version number, at the terminal prompt, type:

% R CMD INSTALL Zelig_XX.tar.gz

% R CMD INSTALL zoo_XX.tar.gz

% R CMD INSTALL sandwich_XX.tar.gz

% R CMD INSTALL MCMCpack_XX.tar.gz

% R CMD INSTALL coda_XX.tar.gz

% R CMD INSTALL lattice_XX.tar.gz

% R CMD INSTALL mvtnorm_XX.tar.gz

% R CMD INSTALL VGAM_XX.tar.gz

% R CMD INSTALL sna_XX.tar.gz

% R CMD INSTALL systemfit_XX.tar.gz

% R CMD INSTALL nnet_XX.tar.gz

% R CMD INSTALL gee_XX.tar.gz

% R CMD INSTALL mgcv_XX.tar.gz

% rm Zelig_XX.tar.gz zoo_XX.tar.gz sandwich_XX.tar.gz MCMCpack_XX.tar.gz coda_XX.tar.gz lattice_XX.tar.gz mvtnorm_XX.tar.gz mvtnorm_XX.tar.gz VGAM_XX.tar.gz sna_XX.tar.gz systemfit_XX.tar.gz nnet_XX.tar.gz gee_XX.tar.gz mgcv_XX.tar.gz

(d) Create a .Rprofile file in your home directory, containing the line:

library(Zelig)

This will load Zelig every time you start R.

Zelig is distributed under the GNU General Public License, Version 2. After installation,
the source code is located in your R library directory. If you followed the example above,
this is /.R/library/Zelig/.

Updating Zelig

There are two ways to update Zelig.

1. We recommend that you start R and, at the R prompt, type:

> update.packages()

2. Alternatively, you may remove an old version by command by typing R CMD REMOVE

Zelig at the terminal prompt. Then download and reinstall the package using the
installation procedure Section 2.3 outlined above.

2.4 Version Compatability

In addition to R itself, Zelig also depends on several R packages maintained by other devel-
opment teams. Although we make every effort to keep the latest version of Zelig up-to-date
with the latest version of those packages, there may occasionally be incompatabilities. See
A.1 in the Appendix for a list of packages tested to be compatabile with a given Zelig release.
You may obtain older versions of most packages at http://www.r-project.org.
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Chapter 3

Data Analysis Commands

3.1 Command Syntax

Once R is installed, you only need to know a few basic elements to get started. It’s important
to remember that R, like any spoken language, has rules for proper syntax. Unlike English,
however, the rules for intelligible R are small in number and quite precise (see Section 3.1.2).

3.1.1 Getting Started

1. To start R under Linux or Unix, type R at the terminal prompt or M-x R under ESS.

2. The R prompt is >.

3. Type commands and hit enter to execute. (No additional characters, such as semicolons
or commas, are necessary at the end of lines.)

4. To quit from R, type q() and press enter.

5. The # character makes R ignore the rest of the line, and is used in this document to
comment R code.

6. We highly recommend that you make a separate working directory or folder for each
project.

7. Each R session has a workspace, or working memory, to store the objects that you
create or input. These objects may be:

(a) values, which include numerical, integer, character, and logical values;

(b) data structures made up of variables (vectors), matrices, and data frames; or

(c) functions that perform the desired tasks on user-specified values or data struc-
tures.
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After starting R, you may at any time use Zelig’s built-in help function to access on-line
help for any command. To see help for all Zelig commands, type help.zelig(command),
which will take you to the help page for all Zelig commands. For help with a specific Zelig
or R command substitute the name of the command for the generic command. For example,
type help.zelig(logit) to view help for the logit model.

3.1.2 Details

.
Zelig uses the syntax of R, which has several essential elements:

1. R is case sensitive. Zelig, the package or library, is not the same as zelig, the
command.

2. R functions accept user-defined arguments: while some arguments are required, other
optional arguments modify the function’s default behavior. Enclose arguments in
parentheses and separate multiple arguments with commas. For example, print(x) or
print(x, digits = 2) prints the contents of the object x using the default number of
digits or rounds to two digits to the right of the decimal point, respectively. You may
nest commands as long as each has its own set of parentheses: log(sqrt(5)) takes
the square root of 5 and then takes the natural log.

3. The <- operator takes the output of the function on the right and saves them in the
named object on the left. For example, z.out <- zelig(...) stores the output from
zelig() as the object z.out in your working memory. You may use z.out as an
argument in other functions, view the output by typing z.out at the R prompt, or
save z.out to a file using the procedures described in Section 3.2.3.

4. You may name your objects anything, within a few constraints:

� You may only use letters (in upper or lower case) and periods to punctuate your
variable names.

� You may not use any special characters (aside from the period) or spaces to
punctuate your variable names.

� Names cannot begin with numbers. For example, R will not let you save an object
as 1997.election but will let you save election.1997.

5. Use the names() command to see the contents of R objects, and the $ operator to
extract elements from R objects. For example:

# Run least squares regression and save the output in working memory:

> z.out <- zelig(y ~ x1 + x2, model = "ls", data = mydata)

# See what's in the R object:

> names(z.out)
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[1] "coefficients" "residuals" "effects" "rank"

# Extract and display the coefficients in z.out:

> z.out$coefficients

6. All objects have a class designation which tells R how to treat it in subsequent com-
mands. An object’s class is generated by the function or mathematical operation that
created it.

7. To see a list of all objects in your current workspace, type: ls(). You can remove an
object permanently from memory by typing remove(goo) (which deletes the object
goo), or remove all the objects with remove(list = ls()).

8. To run commands in a batch, use a text editor (such as the Windows R script editor
or emacs) to compose your R commands, and save the file with a .R file extension in
your working directory. To run the file, type source("Code.R") at the R prompt.

If you encounter a syntax error, check your spelling, case, parentheses, and commas.
These are the most common syntax errors, and are easy to detect and correct with a little
practice. If you encounter a syntax error in batch mode, R will tell you the line on which
the syntax error occurred.

3.2 Data Sets

3.2.1 Data Structures

Zelig uses only three of R’s many data structures:

1. A variable is a one-dimensional vector of length n.

2. A data frame is a rectangular matrix with n rows and k columns. Each column
represents a variable and each row an observation. Each variable may have a different
class. (See Section 3.3.1 for a list of classes.) You may refer to specific variables from
a data frame using, for example, data$variable.

3. A list is a combination of different data structures. For example, z.out contains both
coefficients (a vector) and data (a data frame). Use names() to view the elements
available within a list, and the $ operator to refer to an element in a list.

For a more comprehensive introduction, including ways to manipulate these data struc-
tures, please refer to Chapter 6.

3.2.2 Loading Data

Datasets in Zelig are stored in “data frames.” In this section, we explain the standard ways
to load data from disk into memory, how to handle special cases, and how to verify that the
data you loaded is what you think it is.
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Standard Ways to Load Data

Make sure that the data file is saved in your working directory. You can check to see what
your working directory is by starting R, and typing getwd(). If you wish to use a different
directory as your starting directory, use setwd("dirpath"), where "dirpath" is the full
directory path of the directory you would like to use as your working directory.

After setting your working directory, load data using one of the following methods:

1. If your dataset is in a tab- or space-delimited .txt file, use read.table("mydata.txt")

2. If your dataset is a comma separated table, use read.csv("mydata.csv").

3. To import SPSS, Stata, and other data files, use the foreign package, which au-
tomatically preserves field characteristics for each variable. Thus, variables classed as
dates in Stata are automatically translated into values in the date class for R. For
example:

> library(foreign) # Load the foreign package.

> stata.data <- read.dta("mydata.dta") # For Stata data.

> spss.data <- read.spss("mydata.sav", to.data.frame = TRUE) # For SPSS.

4. To load data in R format, use load("mydata.RData").

5. For sample data sets included with R packages such as Zelig, you may use the data()

command, which is a shortcut for loading data from the sample data directories. Be-
cause the locations of these directories vary by installation, it is extremely difficult to
locate sample data sets and use one of the three preceding methods; data() searches
all of the currently used packages and loads sample data automatically. For example:

> library(Zelig) # Loads the Zelig library.

> data(turnout) # Loads the turnout data.

Special Cases When Loading Data

These procedures apply to any of the above read commands:

1. If your file uses the first row to identify variable names, you should use the option
header = TRUE to import those field names. For example,

> read.csv("mydata.csv", header = TRUE)

will read the words in the first row as the variable names and the subsequent rows
(each with the same number of values as the first) as observations for each of those
variables. If you have additional characters on the last line of the file or fewer values
in one of the rows, you need to edit the file before attempting to read the data.
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2. The R missing value code is NA. If this value is in your data, R will recognize your
missing values as such. If you have instead used a place-holder value (such as -9) to
represent missing data, you need to tell R this on loading the data:

> read.table("mydata.tab", header = TRUE, na.strings = "-9")

Note: You must enclose your place holder values in quotes.

3. Unlike Windows, the file extension in R does not determine the default method for
dealing with the file. For example, if your data is tab-delimited, but saved as a .sav

file, read.table("mydata.sav") will load your data into R.

Verifying You Loaded The Data Correctly

Whichever method you use, try the names(), dim(), and summary() commands to verify
that the data was properly loaded. For example,

> data <- read.csv("mydata.csv", header = TRUE) # Read the data.

> dim(data) # Displays the dimensions of the data frame

[1] 16000 8 # in rows then columns.

> data[1:10,] # Display rows 1-10 and all columns.

> names(data) # Check the variable names.

[1] "V1" "V2" "V3" # These values indicate that the variables

# weren't named, and took default values.

> names(data) <- c("income", "educate", "year") # Assign variable names.

> summary(data) # Returning a summary for each variable.

In this case, the summary() command will return the maximum, minimum, mean, median,
first and third quartiles, as well as the number of missing values for each variable.

3.2.3 Saving Data

Use save() to write data or any object to a file in your working directory. For example,

> save(mydata, file = "mydata.RData") # Saves `mydata' to `mydata.RData'

# in your working directory.

> save.image() # Saves your entire workspace to

# the default `.RData' file.

R will also prompt you to save your workspace when you use the q() command to quit.
When you start R again, it will load the previously saved workspace. Restarting R will not,
however, load previously used packages. You must remember to load Zelig at the beginning
of every R session.

Alternatively, you can recall individually saved objects from .RData files using the load()
command. For example,
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> load("mydata.RData")

loads the objects saved in the mydata.RData file. You may save a data frame, a data frame
and associated functions, or other R objects to file.

3.3 Variables

3.3.1 Classes of Variables

R variables come in several types. Certain Zelig models require dependent variables of a
certain class of variable. (These are documented under the manual pages for each model.)
Use class(variable) to determine the class of a variable or class(data$variable) for a
variable within a data frame.

Types of Variables

For all types of variable (vectors), you may use the c() command to “concatenate” elements
into a vector, the : operator to generate a sequence of integer values, the seq() command
to generate a sequence of non-integer values, or the rep() function to repeat a value to a
specified length. In addition, you may use the <- operator to save variables (or any other
objects) to the workspace. For example:

> logic <- c(TRUE, FALSE, TRUE, TRUE, TRUE) # Creates `logic' (5 T/F values).

> var1 <- 10:20 # All integers between 10 and 20.

> var2 <- seq(from = 5, to = 10, by = 0.5) # Sequence from 5 to 10 by

# intervals of 0.5.

> var3 <- rep(NA, length = 20) # 20 `NA' values.

> var4 <- c(rep(1, 15), rep(0, 15)) # 15 `1's followed by 15 `0's.

For the seq() command, you may alternatively specify length instead of by to create a
variable with a specific number (denoted by the length argument) of evenly spaced elements.

1. Numeric variables are real numbers and the default variable class for most dataset
values. You can perform any type of math or logical operation on numeric values. If
var1 and var2 are numeric variables, we can compute

> var3 <- log(var2) - 2*var1 # Create `var3' using math operations.

Inf (infinity), -Inf (negative infinity), NA (missing value), and NaN (not a number) are
special numeric values on which most math operations will fail. (Logical operations
will work, however.) Use as.numeric() to transform variables into numeric variables.
Integers are a special class of numeric variable.
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2. Logical variables contain values of either TRUE or FALSE. R supports the following
logical operators: ==, exactly equals; >, greater than; <, less than; >=, greater than
or equals; <=, less than or equals; and !=, not equals. The = symbol is not a logical
operator. Refer to Section 3.3.2 for more detail on logical operators. If var1 and var2

both have n observations, commands such as

> var3 <- var1 < var2

> var3 <- var1 == var2

create n TRUE/FALSE observations such that the ith observation in var3 evaluates
whether the logical statement is true for the ith value of var1 with respect to the ith
value of var2. Logical variables should usually be converted to integer values prior to
analysis; use the as.integer() command.

3. Character variables are sets of text strings. Note that text strings are always enclosed
in quotes to denote that the string is a value, not an object in the workspace or an
argument for a function (neither of which take quotes). Variables of class character
are not normally used in data analysis, but used as descriptive fields. If a character
variable is used in a statistical operation, it must first be transformed into a factored
variable.

4. Factor variables may contain values consisting of either integers or character strings.
Use factor() or as.factor() to convert character or integer variables into factor
variables. Factor variables separate unique values into levels. These levels may either
be ordered or unordered. In practice, this means that including a factor variable among
the explanatory variables is equivalent to creating dummy variables for each level. In
addition, some models (ordinal logit, ordinal probit, and multinomial logit), require
that the dependent variable be a factor variable.

3.3.2 Recoding Variables

Researchers spend a significant amount of time cleaning and recoding data prior to beginning
their analyses. R has several procedures to facilitate the process.

Extracting, Replacing, and Generating New Variables

While it is not difficult to recode variables, the process is prone to human error. Thus,
we recommend that before altering the data, you save your existing data frame using the
procedures described in Section 3.2.3, that you only recode one variable at a time, and that
you recode the variable outside the data frame and then return it to the data frame.

To extract the variable you wish to recode, type:

> var <- data$var1 # Copies `var1' from `data', creating `var'.
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Do not sort the extracted variable or delete observations from it. If you do, the ith observa-
tion in var will no longer match the ith observation in data.

To replace the variable or generate a new variable in the data frame, type:

> data$var1 <- var # Replace `var1' in `data' with `var'.

> data$new.var <- var # Generate `new.var' in `data' using `var'.

To remove a variable from a data frame (rather than replacing one variable with another):

> data$var1 <- NULL

Logical Operators

R has an intuitive method for recoding variables, which relies on logical operators that return
statements of TRUE and FALSE. A mathematical operator (such as ==, !=, >, >= <, and <=)
takes two objects of equal dimensions (scalars, vectors of the same length, matrices with
the same number of rows and columns, or similarly dimensioned arrays) and compares every
element in the first object to its counterpart in the second object.

� ==: checks that one variable “exactly equals” another in a list-wise manner. For exam-
ple:

> x <- c(1, 2, 3, 4, 5) # Creates the object `x'.

> y <- c(2, 3, 3, 5, 1) # Creates the object `y'.

> x == y # Only the 3rd `x' exactly equals

[1] FALSE FALSE TRUE FALSE FALSE # its counterpart in `y'.

(The = symbol is not a logical operator.)

� !=: checks that one variable does not equal the other in a list-wise manner. Continuing
the example:

> x != y

[1] TRUE TRUE FALSE TRUE TRUE

� > (>=): checks whether each element in the left-hand object is greater than (or equal
to) every element in the right-hand object. Continuing the example from above:

> x > y # Only the 5th `x' is greater

[1] FALSE FALSE FALSE FALSE TRUE # than its counterpart in `y'.

> x >= y # The 3rd `x' is equal to the

[1] FALSE FALSE TRUE FALSE TRUE # 3rd `y' and becomes TRUE.

� < (<=): checks whether each element in the left-hand object is less than (or equal to)
every object in the right-hand object. Continuing the example from above:
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> x < y # The elements 1, 2, and 4 of `x' are

[1] TRUE TRUE FALSE TRUE FALSE # less than their counterparts in `y'.

> x <= y # The 3rd `x' is equal to the 3rd `y'

[1] TRUE TRUE TRUE TRUE FALSE # and becomes TRUE.

For two vectors of five elements, the mathematical operators compare the first element in
x to the first element in y, the second to the second and so forth. Thus, a mathematical
comparison of x and y returns a vector of five TRUE/FALSE statements. Similarly, for two
matrices with 3 rows and 20 columns each, the mathematical operators will return a 3× 20
matrix of logical values.

There are additional logical operators which allow you to combine and compare logical
statements:

� &: is the logical equivalent of “and”, and evaluates one array of logical statements
against another in a list-wise manner, returning a TRUE only if both are true in the
same location. For example:

> a <- matrix(c(1:12), nrow = 3, ncol = 4) # Creates a matrix `a'.

> a

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> b <- matrix(c(12:1), nrow = 3, ncol = 4) # Creates a matrix `b'.

> b

[,1] [,2] [,3] [,4]

[1,] 12 9 6 3

[2,] 11 8 5 2

[3,] 10 7 4 1

> v1 <- a > 3 # Creates the matrix `v1' (T/F values).

> v2 <- b > 3 # Creates the matrix `v2' (T/F values).

> v1 & v2 # Checks if the (i,j) value in `v1' and

[,1] [,2] [,3] [,4] # `v2' are both TRUE. Because columns

[1,] FALSE TRUE TRUE FALSE # 2-4 of `v1' are TRUE, and columns 1-3

[2,] FALSE TRUE TRUE FALSE # of `var2' are TRUE, columns 2-3 are

[3,] FALSE TRUE TRUE FALSE # TRUE here.

> (a > 3) & (b > 3) # The same, in one step.

For more complex comparisons, parentheses may be necessary to delimit logical state-
ments.

� |: is the logical equivalent of “or”, and evaluates in a list-wise manner whether either
of the values are TRUE. Continuing the example from above:
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> (a < 3) | (b < 3) # (1,1) and (2,1) in `a' are less

[,1] [,2] [,3] [,4] # than 3, and (2,4) and (3,4) in

[1,] TRUE FALSE FALSE FALSE # `b' are less than 3; | returns

[2,] TRUE FALSE FALSE TRUE # a matrix with `TRUE' in (1,1),

[3,] FALSE FALSE FALSE TRUE # (2,1), (2,4), and (3,4).

The && (if and only if) and || (either or) operators are used to control the command flow
within functions. The && operator returns a TRUE only if every element in the comparison
statement is true; the || operator returns a TRUE if any of the elements are true. Unlike
the & and | operators, which return arrays of logical values, the && and || operators return
only one logical statement irrespective of the dimensions of the objects under consideration.
Hence, && and || are logical operators which are not appropriate for recoding variables.

Coding and Recoding Variables

R uses vectors of logical statements to indicate how a variable should be coded or recoded.
For example, to create a new variable var3 equal to 1 if var1 < var2 and 0 otherwise:

> var3 <- var1 < var2 # Creates a vector of n T/F observations.

> var3 <- as.integer(var3) # Replaces the T/F values in `var3' with

# 1's for TRUE and 0's for FALSE.

> var3 <- as.integer(var1 < var2) # Combine the two steps above into one.

In addition to generating a vector of dummy variables, you can also refer to specific values
using logical operators defined in Section 3.3.2. For example:

> v1 <- var1 == 5 # Creates a vector of T/F statements.

> var1[v1] <- 4 # For every TRUE in `v1', replaces the

# value in `var1' with a 4.

> var1[var1 == 5] <- 4 # The same, in one step.

The index (inside the square brackets) can be created with reference to other variables. For
example,

> var1[var2 == var3] <- 1

replaces the ith value in var1 with a 1 when the ith value in var2 equals the ith value in
var3. If you use = in place of ==, however, you will replace all the values in var1 with 1’s
because = is another way to assign variables. Thus, the statement var2 = var3 is of course
true.

Finally, you may also replace any (character, numerical, or logical) values with special
values (most commonly, NA).

> var1[var1 == "don't know"] <- NA # Replaces all "don't know"'s with NA's.
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After recoding the var1 replace the old data$var1 with the recoded var1: data$var1

<- var1. You may combine the recoding and replacement procedures into one step. For
example:

> data$var1[data$var1 =< 0] <- -1

Alternatively, rather than recoding just specific values in variables, you may calculate
new variables from existing variables. For example,

> var3 <- var1 + 2 * var2

> var3 <- log(var1)

After generating the new variables, use the assignment mechanism <- to insert the new
variable into the data frame.

In addition to generating vectors of dummy variables, you may transform a vector into a
matrix of dummy indicator variables. For example, see Section 7.3 to transform a vector of
k unique values (with n observations in the complete vector) into a n× k matrix.

Missing Data

To deal with missing values in some of your variables:

1. You may generate multiply imputed datasets using Amelia (or other programs).

2. You may omit missing values. Zelig models automatically apply list-wise deletion, so
no action is required to run a model. To obtain the total number of observations
or produce other summary statistics using the analytic dataset, you may manually
omit incomplete observations. To do so, first create a data frame containing only the
variables in your analysis. For example:

> new.data <- cbind(data$dep.var, data$var1, data$var2, data$var3)

The cbind() command “column binds” variables into a data frame. (A similar com-
mand rbind() “row binds” observations with the same number of variables into a data
frame.) To omit missing values from this new data frame:

> new.data <- na.omit(new.data)

If you perform na.omit() on the full data frame, you risk deleting observations that
are fully observed in your experimental variables, but missing values in other vari-
ables. Creating a new data frame containing only your experimental variables usually
increases the number of observations retained after na.omit().
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Chapter 4

Statistical Commands

4.1 Zelig Commands

4.1.1 Quick Overview

For any statistical model, Zelig does its work with a combination of three commands.

Figure 4.1: Main Zelig commands (solid arrows) and some options (dashed arrows)
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1. Use zelig() to run the chosen statistical model on a given data set, with a specific
set of variables. For standard likelihood models, for example, this step estimates the
coefficients, other model parameters, and a variance-covariance matrix. In addition,
you may choose from a variety of options:
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� Pre-process data: Prior to calling zelig(), you may choose from a variety of
data pre-processing commands (matching or multiple imputation, for example)
to make your statistical inferences more accurate.

� Summarize model: After calling zelig(), you may summarize the fitted model
output using summary().

� Validate model: After calling zelig(), you may choose to validate the fitted
model. This can be done, for example, by using cross-validation procedures and
diagnostics tools.

2. Use setx() to set each of the explanatory variables to chosen (actual or counterfac-
tual) values in preparation for calculating quantities of interest. After calling setx(),
you may use WhatIf to evaluate these choices by determining whether they involve
interpolation (i.e., are inside the convex hull of the observed data) or extrapolation,
as well as how far these counterfactuals are from the data. Counterfactuals chosen in
setx() that involve extrapolation far from the data can generate considerably more
model dependence (see King and Zeng (2006a), King and Zeng (2007), Stoll et al.
(2005)).

3. Use sim() to draw simulations of your quantity of interest (such as a predicted value,
predicted probability, risk ratio, or first difference) from the model. (These simulations
may be drawn using an asymptotic normal approximation (the default), bootstrapping,
or other methods when available, such as directly from a Bayesian posterior.) After
calling sim(), use any of the following to summarize the simulations:

� The summary() function gives a numerical display. For multiple setx() values,
summary() lets you summarize simulations by choosing one or a subset of obser-
vations.

� If the setx() values consist of only one observation, plot() produces density
plots for each quantity of interest.

Whenever possible, we use z.out as the zelig() output object, x.out as the setx() output
object, and s.out as the sim() output object, but you may choose other names.

4.1.2 Examples

� Use the turnout data set included with Zelig to estimate a logit model of an individual’s
probability of voting as function of race and age. Simulate the predicted probability of
voting for a white individual, with age held at its mean:

> data(turnout)

> z.out <- zelig(vote ~ race + age, model = "logit", data = turnout)

> x.out <- setx(z.out, race = "white")

> s.out <- sim(z.out, x = x.out)

> summary(s.out)
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� Compute a first difference and risk ratio, changing education from 12 to 16 years, with
other variables held at their means in the data:

> data(turnout)

> z.out <- zelig(vote ~ race + educate, model = "logit", data = turnout)

> x.low <- setx(z.out, educate = 12)

> x.high <- setx(z.out, educate = 16)

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out) # Numerical summary.

> plot(s.out) # Graphical summary.

� Calculate expected values for every observation in your data set:

> data(turnout)

> z.out <- zelig(vote ~ race + educate, model = "logit", data = turnout)

> x.out <- setx(z.out, fn = NULL)

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

� Use five multiply imputed data sets from Scheve and Slaughter (2001) in an ordered
logit model:

> data(immi1, immi2, immi3, immi4, immi5)

> z.out <- zelig(as.factor(ipip) ~ wage1992 + prtyid + ideol,

model = "ologit",

data = mi(immi1, immi2, immi3, immi4, immi5))

� Use the nearest propensity score matching via MatchIt package, and then calculate the
conditional average treatment effect of the job training program based on the linear
regression model:

> library(MatchIt)

> data(lalonde)

> m.out <- matchit(treat ~ re74 + re75 + educ + black + hispan + age,

data = lalonde, method = "nearest")

> m.data <- match.data(m.out)

> z.out <- zelig(re78 ~ treat + distance + re74 + re75 + educ + black +

hispan + age, data = m.data, model = "ls")

> x.out0 <- setx(z.out, fn = NULL, treat = 0)

> x.out1 <- setx(z.out, fn = NULL, treat = 1)

> s.out <- sim(z.out, x=x.out0, x1=x.out1)

> summary(s.out)
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� Validate the fitted model using the leave-one-out cross validation procedure and cal-
culating the average squared prediction error via boot package. For example:

> library(boot)

> data(turnout)

> z.out <- zelig(vote ~ race + educate, model = "logit", data = turnout)

> cv.out <- cv.glm(z.out, data = turnout)

> print(cv.out$delta)

4.1.3 Details

1. z.out <- zelig(formula, model, data, by = NULL, ...)

The zelig() command estimates a selected statistical model given the specified data.
You may name the output object (z.out above) anything you desire. You must include
three required arguments, in the following order:

(a) formula takes the form y ~ x1 + x2, where y is the dependent variable and x1

and x2 are the explanatory variables, and y, x1, and x2 are contained in the
same dataset. The + symbol means “inclusion” not “addition.” You may include
interaction terms in the form of x1*x2 without having to compute them in prior
steps or include the main effects separately. For example, R treats the formula y

~ x1*x2 as y ~ x1 + x2 + x1*x2. To prevent R from automatically including
the separate main effect terms, use the I() function, thus: y ~ I(x1 * x2).

(b) model lets you choose which statistical model to run. You must put the name
of the model in quotation marks, in the form model = "ls", for example. See
Section 4.2 for a list of currently supported models.

(c) data specifies the data frame containing the variables called in the formula, in the
form data = mydata. Alternatively, you may input multiply imputed datasets in
the form data = mi(data1, data2, ...).1 If you are working with matched
data created using MatchIt, you may create a data frame within the zelig()

statement by using data = match.data(...). In all cases, the data frame or
MatchIt object must have been previously loaded into the working memory.

(d) by (an optional argument which is by default NULL) allows you to choose a factor
variable (see Section 2) in the data frame as a subsetting variable. For each of
the unique strata defined in the by variable, zelig() does a separate run of the
specified model. The variable chosen should not be in the formula, because there
will be no variance in the by variable in the subsets. If you have one data set for
all 191 countries in the UN, for example, you may use the by option to run the

1Multiple imputation is a method of dealing with missing values in your data which is more powerful
than the usual list-wise deletion approach. You can create multiply imputed datasets with a program such
as Amelia; see King, Honaker, Joseph, Scheve (2000).
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same model 191 times, once on each country, all with a single zelig() statement.
You may also use the by option to run models on MatchIt subclasses.

(e) The output object, z.out, contains all of the options chosen, including the name of
the data set. Because data sets may be large, Zelig does not store the full data set,
but only the name of the dataset. Every time you use a Zelig function, it looks for
the dataset with the appropriate name in working memory. (Thus, it is critical
that you do not change the name of your data set, or perform any additional
operations on your selected variables between calling zelig() and setx(), or
between setx() and sim().)

(f) If you would like to view the regression output at this intermediate step, type
summary(z.out) to return the coefficients, standard errors, t-statistics and p-
values. We recommend instead that you calculate quantities of interest; creating
z.out is only the first of three steps in this task.

2. x.out <- setx(z.out, fn = list(numeric = mean, ordered = median, others =

mode), data = NULL, cond = FALSE, ...)

The setx() command lets you choose values for the explanatory variables, with which
sim() will simulate quantities of interest. There are two types of setx() procedures:

� You may perform the usual unconditional prediction (by default, cond = FALSE),
by explicitly choosing the values of each explanatory variable yourself or letting
setx() compute them, either from the data used to create z.out or from a new
data set specified in the optional data argument. You may also compute predic-
tions for all observed values of your explanatory variables using fn = NULL.

� Alternatively, for advanced uses, you may perform conditional prediction (cond
= TRUE), which predicts certain quantities of interest by conditioning on the ob-
served value of the dependent variable. In a simple linear regression model, this
procedure is not particularly interesting, since the conditional prediction is merely
the observed value of the dependent variable for that observation. However, con-
ditional prediction is extremely useful for other models and methods, including
the following:

– In a matched sampling design, the sample average treatment effect for the
treated can be estimated by computing the difference between the observed
dependent variable for the treated group and their expected or predicted
values of the dependent variable under no treatment (Ho et al. 2007).

– With censored data, conditional prediction will ensure that all predicted val-
ues are greater than the censored observed values (King et al. 1990).

– In ecological inference models, conditional prediction guarantees that the pre-
dicted values are on the tomography line and thus restricted to the known
bounds (King 1997; Adolph et al. 2003).
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– The conditional prediction in many linear random effects (or Bayesian hierar-
chical) models is a weighted average of the unconditional prediction and the
value of the dependent variable for that observation, with the weight being
an estimable function of the accuracy of the unconditional prediction (see ?).
When the unconditional prediction is highly certain, the weight on the value
of the dependent variable for this observation is very small, hence reducing
inefficiency; when the unconditional prediction is highly uncertain, the rel-
ative weight on the unconditional prediction is very small, hence reducing
bias. Although the simple weighted average expression no longer holds in
nonlinear models, the general logic still holds and the mean square error of
the measurement is typically reduced (see King et al. 2004).

In these and other models, conditioning on the observed value of the dependent
variable can vastly increase the accuracy of prediction and measurement.

The setx() arguments for unconditional prediction are as follows:

(a) z.out, the zelig() output object, must be included first.

(b) You can set particular explanatory variables to specified values. For example:

> z.out <- zelig(vote ~ age + race, model = "logit", data = turnout)

> x.out <- setx(z.out, age = 30)

setx() sets the variables not explicitly listed to their mean if numeric, and their
median if ordered factors, and their mode if unordered factors, logical values, or
character strings. Alternatively, you may specify one explanatory variable as a
range of values, creating one observation for every unique value in the range of
values:2

> x.out <- setx(z.out, age = 18:95)

This creates 78 observations with with age set to 18 in the first observation, 19 in
the second observation, up to 95 in the 78th observation. The other variables are
set to their default values, but this may be changed by setting fn, as described
next.

(c) Optionally, fn is a list which lets you to choose a different function to apply to
explanatory variables of class

� numeric, which is mean by default,

� ordered factor, which is median by default, and

� other variables, which consist of logical variables, character string, and un-
ordered factors, and are set to their mode by default.

2If you allow more than one variable to vary at a time, you risk confounding the predictive effect of the
variables in question.
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While any function may be applied to numeric variables, mean will default to
median for ordered factors, and mode is the only available option for other types
of variables. In the special case, fn = NULL, setx() returns all of the observations.

(d) You cannot perform other math operations within the fn argument, but can use
the output from one call of setx to create new values for the explanatory variables.
For example, to set the explanatory variables to one standard deviation below
their mean:

> X.sd <- setx(z.out, fn = list(numeric = sd))

> X.mean <- setx(z.out, fn = list(numeric = mean))

> x.out <- X.mean - X.sd

(e) Optionally, data identifies a new data frame (rather than the one used to create
z.out) from which the setx() values are calculated. You can use this argument
to set values of the explanatory variables for hold-out or out-of-sample fit tests.

(f) The cond is always FALSE for unconditional prediction.

If you wish to calculate risk ratios or first differences, call setx() a second time to
create an additional set of the values for the explanatory variables. For example,
continuing from the example above, you may create an alternative set of explanatory
variables values one standard deviation above their mean:

> x.alt <- X.mean + X.sd

The required arguments for conditional prediction are as follows:

(a) z.out, the zelig() output object, must be included first.

(b) fn, which equals NULL to indicate that all of the observations are selected. You
may only perform conditional inference on actual observations, not the mean of
observations or any other function applied to the observations. Thus, if fn is
missing, but cond = TRUE, setx() coerces fn = NULL.

(c) data, the data for conditional prediction.

(d) cond, which equals TRUE for conditional prediction.

Additional arguments, such as any of the variable names, are ignored in conditional
prediction since the actual values of that observation are used.

3. s.out <- sim(z.out, x = x.out, x1 = NULL, num = c(1000, 100), bootstrap =

FALSE, bootfn = NULL, ...)

The sim() command simulates quantities of interest given the output objects from
zelig() and setx(). This procedure uses only the assumptions of the statistical
model. The sim() command performs either unconditional or conditional prediction
depending on the options chosen in setx().

The arguments are as follows for unconditional prediction:
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(a) z.out, the model output from zelig().

(b) x, the output from the setx() procedure performed on the model output.

(c) Optionally, you may calculate first differences by specifying x1, an additional
setx() object. For example, using the x.out and x.alt, you may generate first
differences using:

> s.out <- sim(z.out, x = x.out, x1 = x.alt)

(d) By default, the number of simulations, num, equals 1000 (or 100 simulations if
bootstrap is selected), but this may be decreased to increase computational speed,
or increased for additional precision.

(e) Zelig simulates parameters from classical maximum likelihood models using asymp-
totic normal approximation to the log-likelihood. This is the same assumption as
used for frequentist hypothesis testing (which is of course equivalent to the asymp-
totic approximation of a Bayesian posterior with improper uniform priors). See
King, Tomz, and Wittenberg (2000). For Bayesian models, Zelig simulates quanti-
ties of interest from the posterior density, whenever possible. For robust Bayesian
models, simulations are drawn from the identified class of Bayesian posteriors.

(f) Alternatively, you may set bootstrap = TRUE to simulate parameters using boot-
strapped data sets. If your dataset is large, bootstrap procedures will usually
be more memory intensive and time-consuming than simulation using asymp-
totic normal approximation. The type of bootstrapping (including the sampling
method) is determined by the optional argument bootfn, described below.

(g) If bootstrap = TRUE is selected, sim() will bootstrap parameters using the de-
fault bootfn, which re-samples from the data frame with replacement to create a
sampled data frame of the same number of observations, and then re-runs zelig()
(inside sim()) to create one set of bootstrapped parameters. Alternatively, you
may create a function outside the sim() procedure to handle different bootstrap
procedures. Please consult help(boot) for more details.3

For conditional prediction, sim() takes only two required arguments:

(a) z.out, the model output from zelig().

(b) x, the conditional output from setx().

(c) Optionally, for duration models, cond.data, which is the data argument from
setx(). For models for duration dependent variables (see Section 6), sim() must
impute the uncensored dependent variables before calculating the average treat-
ment effect. Inputting the cond.data allows sim() to generate appropriate values.

Additional arguments are ignored or generate error messages.

3If you choose to create your own bootfn, it must include the the following three arguments: data, the
original data frame; one of the sampling methods described in help(boot); and object, the original zelig()
output object. The alternative bootstrapping function must sample the data, fit the model, and extract the
model-specific parameters.
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Presenting Results

1. Use summary(s.out) to print a summary of your simulated quantities. You may specify
the number of significant digits as:

> print(summary(s.out), digits = 2)

2. Alternatively, you can plot your results using plot(s.out).

3. You can also use names(s.out) to see the names and a description of the elements
in this object and the $ operator to extract particular results. For most models,
these are: s.out$qi$pr (for predicted values), s.out$qi$ev (for expected values),
and s.out$qi$fd (for first differences in expected values). For the logit, probit, multi-
nomial logit, ordinal logit, and ordinal probit models, quantities of interest also include
s.out$qi$rr (the risk ratio).

4.2 Supported Models

We list here all models implemented in Zelig, organized by the nature of the dependent
variable(s) to be predicted, explained, or described.

1. Continuous Unbounded dependent variables can take any real value in the range
(−∞,∞). While most of these models take a continuous dependent variable, Bayesian
factor analysis takes multiple continuous dependent variables.

(a) "ls": The linear least-squares (see Section 12.32) calculates the coefficients that
minimize the sum of squared residuals. This is the usual method of computing lin-
ear regression coefficients, and returns unbiased estimates of β and σ2 (conditional
on the specified model).

(b) "normal": The Normal (see Section 12.39) model computes the maximum-likelihood
estimator for a Normal stochastic component and linear systematic component.
The coefficients are identical to ls, but the maximum likelihood estimator for σ2

is consistent but biased.

(c) "normal.bayes": The Bayesian Normal regression model (Section 12.40) is sim-
ilar to maximum likelihood Gaussian regression, but makes valid small sample
inferences via draws from the exact posterior and also allows for priors.

(d) "netls": The network least squares regression (Section ??) is similar to least
squares regression for continuous-valued proximity matrix dependent variables.
Proximity matrices are also known as sociomatrices, adjacency matrices, and ma-
trix representations of directed graphs.

(e) "tobit": The tobit regression model (see Section 12.65) is a Normal distribution
with left-censored observations.
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(f) "tobit.bayes": The Bayesian tobit distribution (see Section 12.66) is a Normal
distribution that has either left and/or right censored observations.

(g) "arima": Use auto-regressive, integrated, moving-average (ARIMA) models for
time series data (see Section ??.

(h) "factor.bayes": The Bayesian factor analysis model (see Section 12.12) esti-
mates multiple observed continuous dependent variables as a function of latent
explanatory variables.

2. Dichotomous dependent variables consist of two discrete values, usually (0, 1).

(a) "logit": Logistic regression (see Section 12.22) specifies Pr(Y = 1) to be a(n in-
verse) logistic transformation of a linear function of a set of explanatory variables.

(b) "relogit": The rare events logistic regression option (see Section 12.62) estimates
the same model as the logit, but corrects for bias due to rare events (when one
of the outcomes is much more prevalent than the other). It also optionally uses
prior correction to correct for choice-based (case-control) sampling designs.

(c) "logit.bayes": Bayesian logistic regression (see Section 12.23) is similar to max-
imum likelihood logistic regression, but makes valid small sample inferences via
draws from the exact posterior and also allows for priors.

(d) "probit": Probit regression (see Section 12.55) Specifies Pr(Y = 1) to be a(n
inverse) CDF normal transformation as a linear function of a set of explanatory
variables.

(e) "probit.bayes": Bayesian probit regression (see Section 12.56) is similar to max-
imum likelihood probit regression, but makes valid small sample inferences via
draws from the exact posterior and also allows for priors.

(f) "netlogit": The network logistic regression (Section ??) is similar to logistic
regression for binary-valued proximity matrix dependent variables. Proximity
matrices are also known as sociomatrices, adjacency matrices, and matrix repre-
sentations of directed graphs.

(g) "blogit": The bivariate logistic model (see Section 12.3) models Pr(Yi1 = y1, Yi2 =
y2) for (y1, y2) = (0, 0), (0, 1), (1, 0), (1, 1) according to a bivariate logistic density.

(h) "bprobit": The bivariate probit model (see Section 12.4) models Pr(Yi1 = y1, Yi2 =
y2) for (y1, y2) = (0, 0), (0, 1), (1, 0), (1, 1) according to a bivariate normal density.

(i) "irt1d": The one-dimensional item response model (see Section 12.20) takes
multiple dichotomous dependent variables and models them as a function of one
latent (unobserved) explanatory variable.

(j) "irtkd": The k-dimensional item response model (see Section 12.21) takes mul-
tiple dichotomous dependent variables and models them as a function of k latent
(unobserved) explanatory variables.
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3. Ordinal are used to model ordered, discrete dependent variables. The values of the
outcome variables (such as kill, punch, tap, bump) are ordered, but the distance be-
tween any two successive categories is not known exactly. Each dependent variable may
be thought of as linear, with one continuous, unobserved dependent variable observed
through a mechanism that only returns the ordinal choice.

(a) "ologit": The ordinal logistic model (see Section 12.53) specifies the stochastic
component of the unobserved variable to be a standard logistic distribution.

(b) "oprobit": The ordinal probit distribution (see Section 12.46) specifies the stochas-
tic component of the unobserved variable to be standardized normal.

(c) "oprobit.bayes": Bayesian ordinal probit model (see Section 12.47) is similar to
ordinal probit regression, but makes valid small sample inferences via draws from
the exact posterior and also allows for priors.

(d) "factor.ord": Bayesian ordered factor analysis (see Section 12.14) models ob-
served, ordinal dependent variables as a function of latent explanatory variables.

4. Multinomial dependent variables are unordered, discrete categorical responses. For
example, you could model an individual’s choice among brands of orange juice or among
candidates in an election.

(a) "mlogit": The multinomial logistic model (see Section 12.35) specifies categori-
cal responses distributed according to the multinomial stochastic component and
logistic systematic component.

(b) "mlogit.bayes": Bayesian multinomial logistic regression (see Section 12.36) is
similar to maximum likelihood multinomial logistic regression, but makes valid
small sample inferences via draws from the exact posterior and also allows for
priors.

5. Count dependent variables are non-negative integer values, such as the number of
presidential vetoes or the number of photons that hit a detector.

(a) "poisson": The Poisson model (see Section 12.48) specifies the expected number
of events that occur in a given observation period to be an exponential function
of the explanatory variables. The Poisson stochastic component has the property
that, λ = E(Yi|Xi) = V(Yi|Xi).

(b) "poisson.bayes": Bayesian Poisson regression (see Section 12.49) is similar to
maximum likelihood Poisson regression, but makes valid small sample inferences
via draws from the exact posterior and also allows for priors.

(c) "negbin": The negative binomial model (see Section 12.38) has the same system-
atic component as the Poisson, but allows event counts to be over-dispersed, such
that V(Yi|Xi) > E(Yi|Xi).
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6. Continuous Bounded dependent variables that are continuous only over a certain
range, usually (0,∞). In addition, some models (exponential, lognormal, and Weibull)
are also censored for values greater than some censoring point, such that the dependent
variable has some units fully observed and others that are only partially observed
(censored).

(a) "gamma": The Gamma model (see Section 12.15) for positively-valued, continuous
dependent variables that are fully observed (no censoring).

(b) "exp": The exponential model (see Section 12.11) for right-censored dependent
variables assumes that the hazard function is constant over time. For some vari-
ables, this may be an unrealistic assumption as subjects are more or less likely to
fail the longer they have been exposed to the explanatory variables.

(c) "weibull": The Weibull model (see Section 12.68) for right-censored dependent
variables relaxes the assumption of constant hazard by including an additional
scale parameter α: If α > 1, the risk of failure increases the longer the subject
has survived; if α < 1, the risk of failure decreases the longer the subject has
survived. While zelig() estimates α by default, you may optionally fix α at any
value greater than 0. Fixing α = 1 results in an exponential model.

(d) "lognorm": The log-normal model (see Section 12.31) for right-censored dura-
tion dependent variables specifies the hazard function non-monotonically, with
increasing hazard over part of the observation period and decreasing hazard over
another.

7. Mixed dependent variables include models that take more than one dependent vari-
able, where the dependent variables come from two or more of categories above. (They
do not need to be of a homogeneous type.)

(a) The Bayesian mixed factor analysis model, in contrast to the Bayesian factor anal-
ysis model and ordinal factor analysis model, can model both types of dependent
variables as a function of latent explanatory variables.

8. Ecological inference models estimate unobserved internal cell values given contin-
gency tables with observed row and column marginals.

(a) ei.hier: The hierarchical ei model (see Section 12.9) produces estimates for a
cross-section of 2× 2 tables.

(b) ei.dynamic: Quinn’s dynamic Bayesian ei model (see Section 12.8) estimates a
dynamic Bayesian model for 2×2 tables with temporal dependence across tables.

(c) ei.RxC: The R×C ei model (see Section ??) estimates a hierarchical Multinomial-
Dirichlet ei model for contingency tables with more than 2 rows or columns.
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4.3 Replication Procedures

A large part of any statistical analysis is documenting your work such that given the same
data, anyone may replicate your results. In addition, many journals require the creation
and dissemination of “replication data sets” in order that others may replicate your results
(see King, 1995). Whether you wish to create replication materials for your own records, or
contribute data to others as a companion to your published work, Zelig makes this process
easy.

4.3.1 Saving Replication Materials

Let mydata be your final data set, z.out be your zelig() output, and s.out your sim()

output. To save all of this in one file, type:

> save(mydata, z.out, s.out, file = "replication.RData")

This creates the file replication.RData in your working directory. You may compress this file
using zip or gzip tools.

If you have run several specifications, all of these estimates may be saved in one .RData
file. Even if you only created quantities of interest from one of these models, you may still
save all the specifications in one file. For example:

> save(mydata, z.out1, z.out2, s.out, file = "replication.RData")

Although the .RData format can contain data sets as well as output objects, it is not the
most space-efficient way of saving large data sets. In an uncompressed format, ASCII text
files take up less space than data in .RData format. (When compressed, text-formatted data
is still smaller than .RData-formatted data.) Thus, if you have more than 100,000 observa-
tions, you may wish to save the data set separately from the Zelig output objects. To do this,
use the write.table() command. For example, if mydata is a data frame in your workspace,
use write.table(mydata, file = "mydata.tab") to save this as a tab-delimited ASCII
text file. You may specify other delimiters as well; see help.zelig("write.table") for
options.

4.3.2 Replicating Analyses

If the data set and analyses are all saved in one .RData file, located in your working directory,
you may simply type:

> load("replication.RData") # Loads the replication file.

> z.rep <- repl(z.out) # To replicate the model only.

> s.rep <- repl(s.out) # To replicate the model and

# quantities of interest.
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By default, repl() uses the same options used to create the original output object. Thus,
if the original s.out object used bootstrapping with 245 simulations, the s.rep object will
similarly have 245 bootstrapped simulations. In addition, you may use the prev option when
replicating quantities of interest to reuse rather than recreate simulated parameters. Type
help.zelig("repl") to view the complete list of options for repl().

If the data were saved in a text file, use read.table() to load the data, and then replicate
the analysis:

> dat <- read.table("mydata.tab", header = TRUE) # Where `dat' is the same

> load("replication.RData") # as the name used in

> z.rep <- repl(z.out) # `z.out'.

> s.rep <- repl(s.out)

If you have problems loading the data, please refer to Section 3.2.2.
Finally, you may use the identical() command to ensure that the replicated regression

output is in every way identical to the original zelig() output.4 For example:

> identical(z.out$coef, z.rep$coef) # Checks the coefficients.

Simulated quantities of interest will vary from the original quantities if parameters are re-
simulated or re-sampled. If you wish to use identical() to verify that the quantities of
interest are identical, you may use

# Re-use the parameters simulated (and stored) in the original sim() output.

> s.rep <- repl(s.out, prev = s.out$par)

# Check that the expected values are identical. You may do this for each qi.

> identical(s.out$qi$ev, s.rep$qi$ev)

4The identical() command checks that numeric values are identical to the maximum number of decimal
places (usually 16), and also checks that the the two objects have the same class (numeric, character, integer,
logical, or factor). Refer to help(identical) for more information.
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Chapter 5

Graphing Commands

R, and thus Zelig, can produce exceptionally beautiful plots. Many built-in plotting functions
exist, including scatter plots, line charts, histograms, bar charts, pie charts, ternary diagrams,
contour plots, and a variety of three-dimensional graphs. If you desire, you can exercise a
high degree of control to generate just the right graphic. Zelig includes several default plots
for one-observation simulations for each model. To view these plots on-screen, simply type
plot(s.out), where s.out is the output from sim(). Depending on the model chosen,
plot() will return different plots.

If you wish to create your own plots, this section reviews the most basic procedures for
creating and saving two-dimensional plots. R plots material in two steps:

1. You must call an output device (discussed in Section 5.3), select a type of plot, draw a
plotting region, draw axes, and plot the given data. At this stage, you may also define
axes labels, the plot title, and colors for the plotted data. Step one is described in
Section 5.1 below.

2. Optionally, you may add points, lines, text, or a legend to the existing plot. These
commands are described in Section 5.2.

5.1 Drawing Plots

The most generic plotting command is plot(), which automatically recognizes the type of R
object(s) you are trying to plot and selects the best type of plot. The most common graphs
returned by plot() are as follows:

1. If X is a variable of length n, plot(X) returns a scatter plot of (xi, i) for i = 1, . . . n. If
X is unsorted, this procedure produces a messy graph. Use plot(sort(X)) to arrange
the plotted values of (xi, i) from smallest to largest.

2. With two numeric vectors X and Y, both of length n, plot(X, Y) plots a scatter plot
of each point (xi, yi) for i = 1, . . . n. Alternatively, if Z is an object with two vectors,
plot(Z) also creates a scatter plot.
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Optional arguments specific to plot include:

� main creates a title for the graph, and xlab and ylab label the x and y axes, respec-
tively. For example,

plot(x, y, main = "My Lovely Plot", xlab = "Explanatory Variable",

ylab = "Dependent Variable")

� type controls the type of plot you request. The default is plot(x, y, type = "p"),
but you may choose among the following types:

"p" points
"l" lines
"b" both points and lines
"c" lines drawn up to but not including the points
"h" histogram
"s" a step function
"n" a blank plotting region ( with the axes specified)

� If you choose type = "p", R plots open circles by default. You can change the type of
point by specifying the pch argument. For example, plot(x, y, type = "p", pch =

19) creates a scatter-plot of filled circles. Other options for pch include:

19 solid circle (a disk)
20 smaller solid circle
21 circle
22 square
23 diamond
24 triangle pointed up
25 triangle pointed down

In addition, you can specify your own symbols by using, for example, pch = "*" or
pch = ".".

� If you choose type = "l", R plots solid lines by default. Use the optional lty argument
to set the line type. For example, plot(x, y, type = "l", lty = "dashed") plots
a dashed line. Other options are dotted, dotdash, longdash, and twodash.

� col sets the color of the points, lines, or bars. For example, plot(x, y, type =

"b", pch = 20, lty = "dotted", col = "violet") plots small circles connected
by a dotted line, both of which are violet. (The axes and labels remain black.) Use
colors() to see the full list of available colors.
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� xlim and ylim set the limits to the x-axis and y-axis. For example, plot(x, y, xlim

= c(0, 25), ylim = c(-15, 5)) sets range of the x-axis to [0, 25] and the range of
the y-axis to [−15, 5].

For additional plotting options, refer to help(par).

5.2 Adding Points, Lines, and Legends to Existing Plots

Once you have created a plot, you can add points, lines, text, or a legend. To place each of
these elements, R uses coordinates defined in terms of the x-axes and y-axes of the plot area,
not coordinates defined in terms of the the plotting window or device. For example, if your
plot has an x-axis with values between [0, 100], and a y-axis with values between [50, 75],
you may add a point at (55, 55).

� points() plots one or more sets of points. Use pch with points to add points to
an existing plot. For example, points(P, Q, pch = ".", col = "forest green")

plots each (pi, qi) as tiny green dots.

� lines() joins the specified points with line segments. The arguments col and lty may
also be used. For example, lines(X, Y, col = "blue", lty = "dotted") draws a
blue dotted line from each set of points (xi, yi) to the next. Alternatively, lines also
takes command output which specifies (x, y) coordinates. For example, density(Z)
creates a vector of x and a vector of y, and plot(density(Z)) draws the kernel density
function.

� text() adds a character string at the specified set of (x, y) coordinates. For example,
text(5, 5, labels = "Key Point") adds the label “Key Point” at the plot location
(5, 5). You may also choose the font using the font option, the size of the font relative
to the axis labels using the cex option, and choose a color using the col option. The
full list of options may be accessed using help(text).

� legend() places a legend at a specified set of (x, y) coordinates. Type demo(vertci)

to see an example for legend().

5.3 Saving Graphs to Files

By default, R displays graphs in a window on your screen. To save R plots to file (to include
them in a paper, for example), preface your plotting commands with:

> ps.options(family = c("Times"), pointsize = 12)

> postscript(file = "mygraph.eps", horizontal = FALSE, paper = "special",

width = 6.25, height = 4)
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where the ps.options() command sets the font type and size in the output file, and the
postscript command allows you to specify the name of the file as well as several additional
options. Using paper = special allows you to specify the width and height of the encap-
sulated postscript region in inches (6.25 inches long and 4 inches high, in this case), and the
statement horizontal = FALSE suppresses R’s default landscape orientation. Alternatively,
you may use pdf() instead of postscript(). If you wish to select postscript options for
.pdf output, you may do so using options in pdf(). For example:

> pdf(file = "mygraph.pdf", width = 6.25, height = 4, family = "Times",

+ pointsize = 12)

At the end of every plot, you should close your output device. The command dev.off()

stops writing and saves the .eps or .pdf file to your working directory. If you forget to close
the file, you will write all subsequent plots to the same file, overwriting previous plots. You
may also use dev.off() to close on-screen plot windows.

To write multiple plots to the same file, you can use the following options:

� For plots on separate pages in the same .pdf document, use

> pdf(file = "mygraph.pdf", width = 6.25, height = 4, family = "Times",

+ pointsize = 12, onefile = TRUE)

� For multiple plots on one page, initialize either a .pdf or .eps file, then (before any
plotting commands) type:

par(mfrow = c(2, 4))

This creates a grid that has two rows and four columns. Your plot statements will
populate the grid going across the first row, then the second row, from left to right.
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5.4 Examples

5.4.1 Descriptive Plots: Box-plots
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Using the sample turnout data set included with Zelig, the following commands will produce
the graph above.

> library(Zelig) # Loads the Zelig package.

> data (turnout) # Loads the sample data.

> boxplot(income ~ educate, # Creates a boxplot with income

+ data = turnout, col = "grey", pch = ".", # as a function of education.

+ main = "Income as a Function of Years of Education",

+ xlab = "Education in Years", ylab = "Income in \$10,000s")
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5.4.2 Density Plots: A Histogram

Histograms are easy ways to evaluate the density of a quantity of interest.
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Here’s the code to create this graph:

> library(Zelig) # Loads the Zelig package.

> data(turnout) # Loads the sample data set.

> truehist(turnout$income, col = "wheat1", # Calls the main plot, with

+ xlab = "Annual Income in $10,000s", # options.

+ main = "Histogram of Income")

> lines(density(turnout$income)) # Adds the kernel density line.
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5.4.3 Advanced Examples

The examples above are simple examples which only skim the surface of R’s plotting poten-
tial. We include more advanced, model-specific plots in the Zelig demo scripts, and have
created functions that automate some of these plots, including:

1. Ternary Diagrams describe the predicted probability of a categorical dependent
variable that has three observed outcomes. You may choose to use this plot with the
multinomial logit, the ordinal logit, or the ordinal probit models (Katz and King, 1999).
See Section 12.35 for the sample code, type demo(mlogit) at the R prompt to run the
example, and refer to Section 12.35 to add points to a ternary diagram.
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2. ROC Plots summarize how well models for binary dependent variables (logit, probit,
and relogit) fit the data. The ROC plot evaluates the fraction of 0’s and 1’s correctly
predicted for every possible threshold value at which the continuous Prob(Y = 1) may
be realized as a dichotomous prediction. The closer the ROC curve is to the upper
right corner of the plot, the better the fit of the model specification (King and Zeng,
2002b). See Section 3 for the sample code, and type demo(roc) at the R prompt to
run the example.
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3. Vertical Confidence Intervals may be used for almost any model, and describe simu-
lated confidence intervals for any quantity of interest while allowing one of the explana-
tory variables to vary over a given range of values (King, Tomz and Wittenberg, 2000).
Type demo(vertci) at the R prompt to run the example, and help.zelig(plot.ci)

for the manual page.
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Part II

Advanced Zelig Uses
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Chapter 6

R Objects

In R, objects can have one or more classes, consisting of the class of the scalar value and the
class of the data structure holding the scalar value. Use the is() command to determine
what an object is. If you are already familiar with R objects, you may skip to Section 3.2.2
for loading data, or Section 4.1 for a description of Zelig commands.

6.1 Scalar Values

R uses several classes of scalar values, from which it constructs larger data structures. R
is highly class-dependent: certain operations will only work on certain types of values or
certain types of data structures. We list the three basic types of scalar values here for your
reference:

1. Numeric is the default value type for most numbers. An integer is a subset of the
numeric class, and may be used as a numeric value. You can perform any type of
math or logical operation on numeric values, including:

> log(3 * 4 * (2 + pi)) # Note that pi is a built-in constant,

[1] 4.122270 # and log() the natural log function.

> 2 > 3 # Basic logical operations, including >,

[1] FALSE # <, >= (greater than or equals),

# <= (less than or equals), == (exactly

# equals), and != (not equals).

> 3 >= 2 && 100 == 1000/10 # Advanced logical operations, including

[1] TRUE # & (and), && (if and only if), | (or),

# and || (either or).

Note that Inf (infinity), -Inf (negative infinity), NA (missing value), and NaN (not a
number) are special numeric values on which most math operations will fail. (Logical
operations will work, however.)
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2. Logical operations create logical values of either TRUE or FALSE. To convert logical
values to numerical values, use the as.integer() command:

> as.integer(TRUE)

[1] 1

> as.integer(FALSE)

[1] 0

3. Character values are text strings. For example,

> text <- "supercalafragilisticxpaladocious"

> text

[1] "supercalafragilisticxpaladocious"

assigns the text string on the right-hand side of the <- to the named object in your
workspace. Text strings are primarily used with data frames, described in the next
section. R always returns character strings in quotes.

6.2 Data Structures

6.2.1 Arrays

Arrays are data structures that consist of only one type of scalar value (e.g., a vector of char-
acter strings, or a matrix of numeric values). The most common versions, one-dimensional
and two-dimensional arrays, are known as vectors and matrices, respectively.

Ways to create arrays

1. Common ways to create vectors (or one-dimensional arrays) include:

> a <- c(3, 7, 9, 11) # Concatenates numeric values into a vector

> a <- c("a", "b", "c") # Concatenates character strings into a vector

> a <- 1:5 # Creates a vector of integers from 1 to 5 inclusive

> a <- rep(1, times = 5) # Creates a vector of 5 repeated `1's

To manipulate a vector:

> a[10] # Extracts the 10th value from the vector `a'

> a[5] <- 3.14 # Inserts 3.14 as the 5th value in the vector `a'

> a[5:7] <- c(2, 4, 7) # Replaces the 5th through 7th values with 2, 4, and 7

Unlike larger arrays, vectors can be extended without first creating another vector of
the correct length. Hence,
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> a <- c(4, 6, 8)

> a[5] <- 9 # Inserts a 9 in the 5th position of the vector,

# automatically inserting an `NA' values position 4

2. A factor vector is a special type of vector that allows users to create j indicator
variables in one vector, rather than using j dummy variables (as in Stata or SPSS).
R creates this special class of vector from a pre-existing vector x using the factor()

command, which separates x into levels based on the discrete values observed in x.
These values may be either integer value or character strings. For example,

> x <- c(1, 1, 1, 1, 1, 2, 2, 2, 2, 9, 9, 9, 9)

> factor(x)

[1] 1 1 1 1 1 2 2 2 2 9 9 9 9

Levels: 1 2 9

By default, factor() creates unordered factors, which are treated as discrete, rather
than ordered, levels. Add the optional argument ordered = TRUE to order the factors
in the vector:

> x <- c("like", "dislike", "hate", "like", "don't know", "like", "dislike")

> factor(x, levels = c("hate", "dislike", "like", "don't know"),

+ ordered = TRUE)

[1] like dislike hate like don't know like dislike

Levels: hate < dislike < like < don't know

The factor() command orders the levels according to the order in the optional argu-
ment levels. If you omit the levels command, R will order the values as they occur in
the vector. Thus, omitting the levels argument sorts the levels as like < dislike

< hate < don’t know in the example above. If you omit one or more of the levels in
the list of levels, R returns levels values of NA for the missing level(s):

> factor(x, levels = c("hate", "dislike", "like"), ordered = TRUE)

[1] like dislike hate like <NA> like dislike

Levels: hate < dislike < like

Use factored vectors within data frames for plotting (see Section 5.1), to set the values
of the explanatory variables using setx (see Section 10) and in the ordinal logit and
multinomial logit models (see Section 4.2).

3. Build matrices (or two-dimensional arrays) from vectors (one-dimensional arrays).
You can create a matrix in two ways:

(a) From a vector: Use the command matrix(vector, nrow = k, ncol = n) to
create a k × n matrix from the vector by filling in the columns from left to right.
For example,
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> matrix(c(1,2,3,4,5,6), nrow = 2, ncol = 3)

[,1] [,2] [,3] # Note that when assigning a vector to a

[1,] 1 3 5 # matrix, none of the rows or columns

[2,] 2 4 6 # have names.

(b) From two or more vectors of length k: Use cbind() to combine n vectors vertically
to form a k × n matrix, or rbind() to combine n vectors horizontally to form a
n× k matrix. For example:

> x <- c(11, 12, 13) # Creates a vector `x' of 3 values.

> y <- c(55, 33, 12) # Creates another vector `y' of 3 values.

> rbind(x, y) # Creates a 2 x 3 matrix. Note that row

[,1] [,2] [,3] # 1 is named x and row 2 is named y,

x 11 12 13 # according to the order in which the

y 55 33 12 # arguments were passed to rbind().

> cbind(x, y) # Creates a 3 x 2 matrix. Note that the

x y # columns are named according to the

[1,] 11 55 # order in which they were passed to

[2,] 12 33 # cbind().

[3,] 13 12

R supports a variety of matrix functions, including: det(), which returns the matrix’s
determinant; t(), which transposes the matrix; solve(), which inverts the the matrix;
and %*%, which multiplies two matricies. In addition, the dim() command returns the
dimensions of your matrix. As with vectors, square brackets extract specific values
from a matrix and the assignment mechanism <- replaces values. For example:

> loo[,3] # Extracts the third column of loo.

> loo[1,] # Extracts the first row of loo.

> loo[1,3] <- 13 # Inserts 13 as the value for row 1, column 3.

> loo[1,] <- c(2,2,3) # Replaces the first row of loo.

If you encounter problems replacing rows or columns, make sure that the dims() of
the vector matches the dims() of the matrix you are trying to replace.

4. An n-dimensional array is a set of stacked matrices of identical dimensions. For
example, you may create a three dimensional array with dimensions (x, y, z) by stacking
z matrices each with x rows and y columns.

> a <- matrix(8, 2, 3) # Creates a 2 x 3 matrix populated with 8's.

> b <- matrix(9, 2, 3) # Creates a 2 x 3 matrix populated with 9's.

> array(c(a, b), c(2, 3, 2)) # Creates a 2 x 3 x 2 array with the first

, , 1 # level [,,1] populated with matrix a (8's),

# and the second level [,,2] populated
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[,1] [,2] [,3] # with matrix b (9's).

[1,] 8 8 8

[2,] 8 8 8 # Use square brackets to extract values. For

# example, [1, 2, 2] extracts the second

, , 2 # value in the first row of the second level.

# You may also use the <- operator to

[,1] [,2] [,3] # replace values.

[1,] 9 9 9

[2,] 9 9 9

If an array is a one-dimensional vector or two-dimensional matrix, R will treat the
array using the more specific method.

Three functions especially helpful for arrays:

� is() returns both the type of scalar value that populates the array, as well as the
specific type of array (vector, matrix, or array more generally).

� dims() returns the size of an array, where

> dims(b)

[1] 33 5

indicates that the array is two-dimensional (a matrix), and has 33 rows and 5 columns.

� The single bracket [ ] indicates specific values in the array. Use commas to indicate
the index of the specific values you would like to pull out or replace:

> dims(a)

[1] 14

> a[10] # Pull out the 10th value in the vector `a'

> dims(b)

[1] 33 5

> b[1:12, ] # Pull out the first 12 rows of `b'

> c[1, 2] # Pull out the value in the first row, second column of `c'

> dims(d)

[1] 1000 4 5

> d[ , 3, 1] # Pulls out a vector of 1,000 values

6.2.2 Lists

Unlike arrays, which contain only one type of scalar value, lists are flexible data structures
that can contain heterogeneous value types and heterogeneous data structures. Lists are so
flexible that one list can contain another list. For example, the list output can contain coef,
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a vector of regression coefficients; variance, the variance-covariance matrix; and another
list terms that describes the data using character strings. Use the names() function to view
the named elements in a list, and to extract a named element, use

> names(output)

[1] coefficients variance terms

> output$coefficients

For lists where the elements are not named, use double square brackets [[ ]] to extract
elements:

> L[[4]] # Extracts the 4th element from the list `L'

> L[[4]] <- b # Replaces the 4th element of the list `L' with a matrix `b'

Like vectors, lists are flexible data structures that can be extended without first creating
another list of with the correct number of elements:

> L <- list() # Creates an empty list

> L$coefficients <- c(1, 4, 6, 8) # Inserts a vector into the list, and

# names that vector `coefficients'

# within the list

> L[[4]] <- c(1, 4, 6, 8) # Inserts the vector into the 4th position

# in the list. If this list doesn't

# already have 4 elements, the empty

# elements will be `NULL' values

Alternatively, you can easily create a list using objects that already exist in your workspace:

> L <- list(coefficients = k, variance = v) # Where `k' is a vector and

# `v' is a matrix

6.2.3 Data Frames

A data frame (or data set) is a special type of list in which each variable is constrained
to have the same number of observations. A data frame may contain variables of different
types (numeric, integer, logical, character, and factor), so long as each variable has the same
number of observations.

Thus, a data frame can use both matrix commands and list commands to manipulate
variables and observations.

> dat[1:10,] # Extracts observations 1-10 and all associated variables

> dat[dat$grp == 1,] # Extracts all observations that belong to group 1

> group <- dat$grp # Saves the variable `grp' as a vector `group' in

# the workspace, not in the data frame

> var4 <- dat[[4]] # Saves the 4th variable as a `var4' in the workspace

For a comprehensive introduction to data frames and recoding data, see Section 3.2.2.
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6.2.4 Identifying Objects and Data Structures

Each data structure has several attributes which describe it. Although these attributes are
normally invisible to users (e.g., not printed to the screen when one types the name of the
object), there are several helpful functions that display particular attributes:

� For arrays, dims() returns the size of each dimension.

� For arrays, is() returns the scalar value type and specific type of array (vector, matrix,
array). For more complex data structures, is() returns the default methods (classes)
for that object.

� For lists and data frames, names() returns the variable names, and str() returns the
variable names and a short description of each element.

For almost all data types, you may use summary() to get summary statistics.
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Chapter 7

Programming Statements

This chapter introduces the main programming commands. These include functions, if-else
statements, for-loops, and special procedures for managing the inputs to statistical models.

7.1 Functions

Functions are either built-in or user-defined sets of encapsulated commands which may take
any number of arguments. Preface a function with the function statement and use the <-

operator to assign functions to objects in your workspace.
You may use functions to run the same procedure on different objects in your workspace.

For example,

check <- function(p, q) {

result <- (p - q)/q

result

}

is a simple function with arguments p and q which calculates the difference between the ith
elements of the vector p and the ith element of the vector q as a proportion of the ith element
of q, and returns the resulting vector. For example, check(p = 10, q = 2) returns 4. You
may omit the descriptors as long as you keep the arguments in the correct order: check(10,
2) also returns 4. You may also use other objects as inputs to the function. If again = 10

and really = 2, then check(p = again, q = really) and check(again, really) also
returns 4.

Because functions run commands as a set, you should make sure that each command in
your function works by testing each line of the function at the R prompt.

7.2 If-Statements

Use if (and optionally, else) to control the flow of R functions. For example, let x and y

be scalar numerical values:
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if (x == y) { # If the logical statement in the ()'s is true,

x <- NA # then `x' is changed to `NA' (missing value).

}

else { # The `else' statement tells R what to do if

x <- x^2 # the if-statement is false.

}

As with a function, use { and } to define the set of commands associated with each if and
else statement. (If you include if statements inside functions, you may have multiple sets of
nested curly braces.)

7.3 For-Loops

Use for to repeat (loop) operations. Avoiding loops by using matrix or vector commands is
usually faster and more elegant, but loops are sometimes necessary to assign values. If you
are using a loop to assign values to a data structure, you must first initialize an empty data
structure to hold the values you are assigning.

Select a data structure compatible with the type of output your loop will generate. If your
loop generates a scalar, store it in a vector (with the ith value in the vector corresponding
to the the ith run of the loop). If your loop generates vector output, store them as rows
(or columns) in a matrix, where the ith row (or column) corresponds to the ith iteration
of the loop. If your output consists of matrices, stack them into an array. For list output
(such as regression output) or output that changes dimensions in each iteration, use a list.
To initialize these data structures, use:

> x <- vector() # An empty vector of any length.

> x <- list() # An empty list of any length.

The vector() and list() commands create a vector or list of any length, such that assigning
x[5] <- 15 automatically creates a vector with 5 elements, the first four of which are empty
values (NA). In contrast, the matrix() and array() commands create data structures that
are restricted to their original dimensions.

> x <- matrix(nrow = 5, ncol = 2) # A matrix with 5 rows and 2 columns.

> x <- array(dim = c(5,2,3)) # A 3D array of 3 stacked 5 by 2 matrices.

If you attempt to assign a value at (100, 200, 20) to either of these data structures, R will
return an error message (“subscript is out of bounds”). R does not automatically extend the
dimensions of either a matrix or an array to accommodate additional values.

Example 1: Creating a vector with a logical statement

x <- array() # Initializes an empty data structure.

for (i in 1:10) { # Loops through every value from 1 to 10, replacing
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if (is.integer(i/2)) { # the even values in `x' with i+5.

x[i] <- i + 5

}

} # Enclose multiple commands in {}.

You may use for() inside or outside of functions.

Example 2: Creating dummy variables by hand You may also use a loop to create a
matrix of dummy variables to append to a data frame. For example, to generate fixed effects
for each state, let’s say that you have mydata which contains y, x1, x2, x3, and state, with
state a character variable with 50 unique values. There are three ways to create dummy
variables: 1) with a built-in R command; 2) with one loop; or 3) with 2 for loops.

1. R will create dummy variables on the fly from a single variable with distinct values.

> z.out <- zelig(y ~ x1 + x2 + x3 + as.factor(state),

data = mydata, model = "ls")

This method returns k − 1 indicators for k states.

2. Alternatively, you can use a loop to create dummy variables by hand. There are
two ways to do this, but both start with the same initial commands. Using vector
commands, first create an index of for the states, and initialize a matrix to hold the
dummy variables:

idx <- sort(unique(mydata$state))

dummy <- matrix(NA, nrow = nrow(mydata), ncol = length(idx))

Now choose between the two methods.

(a) The first method is computationally inefficient, but more intuitive for users not
accustomed to vector operations. The first loop uses i as in index to loop through
all the rows, and the second loop uses j to loop through all 50 values in the vector
idx, which correspond to columns 1 through 50 in the matrix dummy.

for (i in 1:nrow(mydata)) {

for (j in 1:length(idx)) {

if (mydata$state[i,j] == idx[j]) {

dummy[i,j] <- 1

}

else {

dummy[i,j] <- 0

}

}

}
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Then add the new matrix of dummy variables to your data frame:

names(dummy) <- idx

mydata <- cbind(mydata, dummy)

(b) As you become more comfortable with vector operations, you can replace the
double loop procedure above with one loop:

for (j in 1:length(idx)) {

dummy[,j] <- as.integer(mydata$state == idx[j])

}

The single loop procedure evaluates each element in idx against the vector mydata$state.
This creates a vector of n TRUE/FALSE observations, which you may transform to
1’s and 0’s using as.integer(). Assign the resulting vector to the appropriate
column in dummy. Combine the dummy matrix with the data frame as above to
complete the procedure.

Example 3: Weighted regression with subsets Selecting the by option in zelig()

partitions the data frame and then automatically loops the specified model through each
partition. Suppose that mydata is a data frame with variables y, x1, x2, x3, and state,
with state a factor variable with 50 unique values. Let’s say that you would like to run a
weighted regression where each observation is weighted by the inverse of the standard error
on x1, estimated for that observation’s state. In other words, we need to first estimate the
model for each of the 50 states, calculate 1 / se(x1j) for each state j = 1, . . . , 50, and then
assign these weights to each observation in mydata.

� Estimate the model separate for each state using the by option in zelig():

z.out <- zelig(y ~ x1 + x2 + x3, by = "state", data = mydata, model = "ls")

Now z.out is a list of 50 regression outputs.

� Extract the standard error on x1 for each of the state level regressions.

se <- array() # Initalize the empty data structure.

for (i in 1:50) { # vcov() creates the variance matrix

se[i] <- sqrt(vcov(z.out[[i]])[2,2]) # Since we have an intercept, the 2nd

} # diagonal value corresponds to x1.

� Create the vector of weights.

wts <- 1 / se

This vector wts has 50 values that correspond to the 50 sets of state-level regression
output in z.out.
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� To assign the vector of weights to each observation, we need to match each observation’s
state designation to the appropriate state. For simplicity, assume that the states are
numbered 1 through 50.

mydata$w <- NA # Initalizing the empty variable

for (i in 1:50) {

mydata$w[mydata$state == i] <- wts[i]

}

We use mydata$state as the index (inside the square brackets) to assign values to
mydata$w. Thus, whenever state equals 5 for an observation, the loop assigns the
fifth value in the vector wts to the variable w in mydata. If we had 500 observations
in mydata, we could use this method to match each of the 500 observations to the
appropriate wts.

If the states are character strings instead of integers, we can use a slightly more complex
version

mydata$w <- NA

idx <- sort(unique(mydata$state))

for (i in 1:length(idx) {

mydata$w[mydata$state == idx[i]] <- wts[i]

}

� Now we can run our weighted regression:

z.wtd <- zelig(y ~ x1 + x2 + x3, weights = w, data = mydata,

model = "ls")
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Chapter 8

Writing New Models

With Zelig, writing a new model in R is straightforward. (If you already have a model, see
Chapter 9 for how to include it in Zelig.) With tools to streamline user inputs, writing a
new model does not require a lot of programming knowledge, but lets developers focus on
the model’s math. Generally, writing a new statistical procedure or model comes in orderly
steps:

1. Write down the mathematical model. Define the parameters that you need, grouping
parameters into convenient vectors or matrices whenever possible (this will make your
code clearer).

2. Write the code.

3. Test the code (usually using Monte Carlo data, where you know the true values being
estimated ) and make sure that it works as expected.

4. Write some documentation explaining your model and the functions that run your
model.

Somewhere between steps [1] and [2], you will need to translate input data into the math-
ematical notation that you used to write down the model. Rather than repeating whole
blocks of code, use functions to streamline the number of commands that users will need to
run your model.

With more steps being performed by fewer commands, the inputs to these commands
become more sophisticated. The structure of those inputs actually matters quite a lot. If
your function has a convoluted syntax, it will be difficult to use, difficult to explain, and
difficult to document. If your function is easy to use and has an intuitive syntax, however,
it will be easy to explain and document, which will make your procedure more accessible to
all users.
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8.1 Managing Statistical Model Inputs

Most statistical models require a matrix of explanatory variables and a matrix of dependent
variables. Rather than have users create matrices themselves, R has a convenient user
interface to create matrices of response and explanatory variables on the fly. Users simply
specify a formula in the form of dependent ~ explanatory variables, and developers use
the following functions to transform the formula into the appropriate matrices. Let mydata
be a data frame.

> formula <- y ~ x1 + x2 # User input

# Given the formula above, programmers can use the following standard commands

> D <- model.frame(formula, data = mydata) # Subset & listwise deletion

> X <- model.matrix(formula, data = D) # Creates X matrix

> Y <- model.response(D) # Creates Y matrix

where

� D is a subset of mydata that contains only the variables specified in the formula (y, x1,
and x2) with listwise deletion performed on the subset data frame;

� X is a matrix that contains a column of 1’s, and the explanatory variables x1 and x2

from D; and

� Y is a matrix containing the dependent variable(s) from D.

Depending on the model, Y may be a column vector, matrix, or other data structure.

8.1.1 Describe the Statistical Model

After setting up the X matrix, the next step for most models will be to identify the cor-
responding vector of parameters. For a single response variable model with no ancillary
parameters, the standard R interface is quite convenient: given X, the model’s parameters
are simply β.

There are very few models, however, that fall into this category. Even Normal regression,
for example, has two sets of parameters β and σ2. In order to make the R formula format
more flexible, Zelig has an additional set of tools that lets you describe the inputs to your
model (for multiple sets of parameters).

After you have written down the statistical model, identify the parameters in your model.
With these parameters in mind, the first step is to write a describe.*() function for your
model. If your model is called mymodel, then the describe.mymodel() function takes no
arguments and returns a list with the following information:

� category: a character string that describes the dependent variable. See Section ?? for
the current list of available categories.
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� parameters: a list containing parameter sets used in your model. For each parameter
(e.g., theta), you need to provide the following information:

– equations: an integer number of equations for the parameter. For parameters
that can take, for example, two to four equations, use c(2, 4).

– tagsAllowed: a logical value (TRUE/FALSE) specifying whether a given parameter
allows constraints.

– depVar: a logical value (TRUE/FALSE) specifying whether a parameter requires a
corresponding dependent variable.

– expVar: a logical value (TRUE/FALSE) specifying whether a parameter allows ex-
planatory variables.

(See Section ?? for examples and additional arguments output by describe.mymodel().)

8.1.2 Single Response Variable Models: Normal Regression Model

Let’s say that you are trying to write a Normal regression model with stochastic component

Normal(yi | µi, σ
2) =

1√
2πσ

exp

(
−
(

(yi − µi)
2

2σ2

))
with scalar variance parameter σ2 > 0, and systematic component E(Yi) = µi = xiβ. This
implies two sets of parameters in your model, and the following describe.normal.regression()
function:

describe.normal.regression <- function() {

category <- "continuous"

mu <- list(equations = 1, # Systematic component

tagsAllowed = FALSE,

depVar = TRUE,

expVar = TRUE)

sigma2 <- list(equations = 1, # Scalar ancillary parameter

tagsAllowed = FALSE,

depVar = FALSE,

expVar = FALSE)

pars <- list(mu = mu, sigma2 = sigma2)

list(category = category, parameters = pars)

}
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To find the log-likelihood:

L (β, σ2 | y) =
n∏

1=1

Normal(yi | µi, σ
2)

=
n∏

i=1

(2πσ2)−1/2 exp

(
−(yi − µi)

2

2σ2

)
= (2πσ2)−n/2

n∏
i=1

exp

(
−(yi − µi)

2

2σ2

)
= (2πσ2)−n/2

n∏
i=1

exp

(
−(yi − xiβ)2

2σ2

)
ln L (β, σ2 | y) = −n

2
ln(2πσ2)−

n∑
i=1

(yi − xiβ)2

2σ2

= −n
2

ln(2πσ2)− 1

2σ2

n∑
i=1

(yi − xiβ)2

∝ −1

2

(
n lnσ2 +

∑n
i=1(yi − xiβ)2

σ2

)
In R code, this translates to:

ll.normal <- function(par, X, Y, n, terms) {

beta <- parse.par(par, terms, eqn = "mu") # [1]

gamma <- parse.par(par, terms, eqn = "sigma2") # [2]

sigma2 <- exp(gamma)

-0.5 * (n * log(sigma2) + sum((Y - X %*% beta)^2 / sigma2))

}

At Comment [1] above, we use the function parse.par() to pull out the vector of parameters
beta (which relate the systematic component µi to the explanatory variables xi). No matter
how many covariates there are, the parse.par() function can use terms to pull out the
appropriate parameters from par. We also use parse.par() at Comment [2] to pull out the
scalar ancillary parameter that (after transformation) corresponds to the σ2 parameter.

To optimize this function, simply type:

out <- optim(start.val, ll.normal, control = list(fnscale = -1),

method = "BFGS", hessian = TRUE, X = X, Y = Y, terms = terms)

where

� start.val is a vector of starting values for par. Use set.start() to create starting
values for all parameters, systematic and ancillary, in one step.

� ll.normal is the log-likelihood function derived above.
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� "BFGS" specifies unconstrained optimization using a quasi-Newton method.

� control = list(fnscale = -1) specifies that R should maximize the function (omit-
ting this causes R to minimize the function by default).

� hessian = TRUE instructs R to return the Hessian matrix (from which you may cal-
culate the variance-covariance matrix).

� X and Y are the matrix of explanatory variables and vector of dependent variables, used
in the ll.normal() function.

� terms are meta-data constructed from the model.frame() command.

Please refer to the R-help for optim() for more options.
To make this procedure generalizable, we can write a function that takes a user-specified

data frame and formula, and optional starting values for the optimization procedure:

normal.regression <- function(formula, data, start.val = NULL, ...) {

fml <- parse.formula(formula, model = "normal.regression") # [1]

D <- model.frame(fml, data = data)

X <- model.matrix(fml, data = D)

Y <- model.response(D)

terms <- attr(D, "terms")

n <- nrow(X)

start.val <- set.start(start.val, terms)

res <- optim(start.val, ll.normal, method = "BFGS",

hessian = TRUE, control = list(fnscale = -1),

X = X, Y = Y, n = n, terms = terms, ...) # [2]

fit <- model.end(res, D) # [3]

fit$n <- n

class(fit) <- "normal" # [4]

fit

}

The following comments correspond to the bracketed numbers above:

1. The parse.formula() command looks for the describe.normal.regression() func-
tion, which changes the user-specified formula into the following format:

list(mu = formula, # where `formula' was specified by the user

sigma = ~ 1)
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2. The ... here indicate that if the user enters any additional arguments when calling
normal.regression(), that those arguments should go to the optim() function.

3. The model.end() function takes the optimized output and the listwise deleted data
frame D and creates an object that will work with setx().

4. Choose a class for your model output so that you will be able to write an appropriate
summary(), param(), and qi() function for your model.

8.1.3 Multivariate models: Bivariate Normal example

Most common models have one systematic component. For n observations, the systematic
component varies over observations i = 1, . . . , n. In the case of the Normal regression model,
the systematic component is µi (σ2 is not estimated as a function of covariates).

In some cases, however, your model may have more than one systematic component.
In the case of bivariate probit, we have a dependent variable Yi = (Yi1, Yi2) observed as
(0,0), (1,0), (0,1), or (1,1) for i = 1, . . . , n. Similar to a single-response probit model, the
stochastic component is described by two latent (unobserved) continuous variables (Y ∗

i1, Y
∗
i2)

which follow the bivariate Normal distribution:(
Y ∗

i1

Y ∗
i2

)
∼ Normal

{(
µi1

µi2

)
,

(
1 ρ
ρ 1

)}
,

where for j = 1, 2, µij is the mean for Y ∗
ij and ρ is a correlation parameter. The follow-

ing observation mechanism links the observed dependent variables, Yij, with these latent
variables

Yij =

{
1 if Y ∗

ij ≥ 0,
0 otherwise.

The systemic components for each observation are

µij = xijβj for j = 1, 2,

ρ =
exp(xi3β3)− 1

exp(xi3β3) + 1
.

In the default specification, ρ is a scalar (such that xi3 only contains an intercept term).
If so, we have two sets of parameters: µi = (µi1, µi2) and ρ. This implies the following

describe.bivariate.probit() function:

describe.bivariate.probit <- function() {

category <- "dichotomous"

package <- list(name = "mvtnorm", # Required package and

version = "0.7") # minimum version number

mu <- list(equations = 2, # Systematic component has 2

tagsAllowed = TRUE, # required equations
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depVar = TRUE,

expVar = TRUE),

rho <- list(equations = 1, # Optional systematic component

tagsAllowed = FALSE, # (estimated as an ancillary

depVar = FALSE, # parameter by default)

expVar = TRUE),

pars <- parameters(mu = mu, rho = rho)

list(category = category, package = package, parameters = pars)

}

Since users may choose different explanatory variables to parameterize µi1 and µi2 (and
sometimes ρ), the model requires a minimum of two formulas. For example,

formulae <- list(mu1 = y1 ~ x1 + x2, # User input

mu2 = y2 ~ x2 + x3)

fml <- parse.formula(formulae, model = "bivariate.probit") # [1]

D <- model.frame(fml, data = mydata)

X <- model.matrix(fml, data = D)

Y <- model.response(D)

At comment [1], parse.formula() finds the describe.bivariate.probit() function and
parses the formulas accordingly.

If ρ takes covariates (and becomes a systematic component rather than an ancillary
parameter), there can be three sets of explanatory variables:

formulae <- list(mu1 = y1 ~ x1 + x2,

mu2 = y2 ~ x2 + x3,

rho = ~ x4 + x5)

From the perspective of the programmer, a nearly identical framework works for both
single and multiple equation models. The (parse.formula()) line changes the class of fml
from "list" to "multiple" and hence ensures that model.frame() and model.matrix() go
to the appropriate methods. D, X , and Y are analogous to their single equation counterparts
above:

� D is the subset of mydata containing the variables y1, y2, x1, x2, and x3 with listwise
deletion performed on the subset;

� X is a matrix corresponding to the explanatory variables, in one of three forms discussed
below (see Section 8.2).

� Y is an n × J matrix (where J = 2 here) with columns (y1, y2) corresponding to the
outcome variables on the left-hand sides of the formulas.
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Given for the bivariate probit probability density described above, the likelihood is:

L(π|Yi) =
n∏

i=1

π
I{Yi=(0,0)}
00 π

I{Yi=(1,0)}
10 π

I{Yi=(0,1)}
01 π

I{Yi=(1,1)}
11

where I is an indicator function and

� π00 =
∫ 0

−∞

∫ 0

−∞ Normal(Y ∗
i1, Y

∗
i2 | µi1, µi2, ρ)dY

∗
i2dY

∗
i1

� π10 =
∫∞

0

∫ 0

−∞ Normal(Y ∗
i1, Y

∗
i2 | µi1, µi2, ρ)dY

∗
i2dY

∗
i1

� π01 =
∫ 0

−∞

∫∞
0

Normal(Y ∗
i1, Y

∗
i2 | µi1, µi2, ρ)dY

∗
i2dY

∗
i1

� π11 = 1− π00 − π10 − π01

This implies the following log-likelihood:

logL(π|Yi) =
n∑

i=1

I{Yi = (0, 0)} log π00 + I{Yi = (1, 0)} log π10

+I{Yi = (0, 1)} log π01 + I{Yi = (1, 1)} log π11

(For the corresponding R code, see Section 8.2.4 below.)

8.2 Easy Ways to Manage Matrices

Most statistical methods relate explanatory variables xi to a dependent variable of interest
yi for each observation i = 1, . . . , n. Let β be a set of parameters that correspond to each
column in X, which is an n× k matrix with rows xi. For a single equation model, the linear
predictor is

ηi = xiβ = β0 + β1xi1 + β2xi2 + · · ·+ βkxik

Thus, η is the set of ηi for i = 1, . . . , n and is usually represented as an n× 1 matrix.
For a two equation model such as bivariate probit, the linear predictor becomes a matrix

with columns corresponding to each dependent variable (y1i, y2i):

ηi = (ηi1, ηi2) = (xi1β1, xi2β2)

With η as an n×2 matrix, we now have a few choices as to how to create the linear predictor:

1. An intuitive layout, which stacks matrices of explanatory variables, provides an easy
visual representation of the relationship between explanatory variables and coefficients;

2. A computationally-efficient layout, which takes advantage of computational vector-
ization; and

3. A memory-saving layout, which reduces the overall size of the X and β matrices.
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Using the simple tools described in this section, you can pick the best matrix management
method for your model.

In addition, the way in which η is created also affects the way parameters are estimated.
Let’s say that you want two parameters to have the same effect in different equations. By
setting up X and β in a certain way, you can let users set constraints across parameters.
Continuing the bivariate probit example above, let the model specification be:

formulae <- list(mu1 = y1 ~ x1 + x2 + tag(x3, "land"),

mu2 = y2 ~ x3 + tag(x4, "land"))

where tag() is a special function that constrains variables to have the same effect across
equations. Thus, the coefficient for x3 in equation mu1 is constrained to be equal to the
coefficient for x4 in equation mu2, and this effect is identified as the “land” effect in both
equations. In order to consider constraints across equations, the structure of both X and β
matter.

8.2.1 The Intuitive Layout

A stacked matrix of X and vector β is probably the most visually intuitive configuration.
Let J = 2 be the number of equations in the bivariate probit model, and let vt be the
total number of unique covariates in both equations. Choosing model.matrix(..., shape

= "stacked") yields a (Jn × vt) = (2n × 6) matrix of explanatory variables. Again, let x1

be an n× 1 vector representing variable x1, x2 x2, and so forth. Then

X =

(
1 0 x1 x2 0 x3

0 1 0 0 x3 x4

)
Correspondingly, β is a vector with elements

(βµ1

0 βµ2

0 βµ1
x1
βµ1

x2
βµ2

x3
βland)′

where βj
0 are the intercept terms for equation j = {µ1, µ2}. Since X is (2n × 6) and β

is (6 × 1), the resulting linear predictor η is also stacked into a (2n × 1) matrix. Although
difficult to manipulate (since observations are indexed by i and 2i for each i = 1, . . . , n rather
than just i), it is easy to see that we have turned the two equations into one big X matrix
and one long vector β, which is directly analogous to the familiar single-equation η.

8.2.2 The Computationally-Efficient Layout

Choosing array X and vector β is probably the the most computationally-efficient config-
uration: model.matrix(..., shape = "array") produces an n × kt × J array where J is
the total number of equations and kt is the total number of parameters across all the equa-
tions. Since some parameter values may be constrained across equations, kt ≤

∑J
j=1 kj. If a
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variable is not in a certain equation, it is observed as a vector of 0s. With this option, each
i = 1, . . . , n xi matrix becomes:(

1 0 xi1 xi2 0 xi3

0 1 0 0 xi3 xi4

)
By stacking each of these xi matrices along the first dimension, we get X as an array with
dimensions n× kt × J .

Correspondingly, β is a vector with elements

(βµ1

0 βµ2

0 βµ1
x1
βµ1

x2
βµ2

x3
βland)′

To multiply the X array with dimensions (n× 6× 2) and the (6× 1) β vector, we vectorize
over equations as follows:

eta <- apply(X, 3, '%*%', beta)

The linear predictor eta is therefore a (n× 2) matrix.

8.2.3 The Memory-Efficient Layout

Choosing a “compact”X matrix and matrix β is probably the most memory-efficient config-
uration: model.matrix(..., shape = "compact") (the default) produces an n×v matrix,
where v is the number of unique variables (5 in this case)1 in all of the equations. Let x1 be
an n× 1 vector representing variable x1, x2 x2, and so forth.

X = (1 x1 x2 x3 x4) β =


βµ1

0 βµ2

0

βµ1
x1

0
βµ1

x2
0

βland βµ2
x3

0 βland


The βland parameter is used twice to implement the constraint, and the number of empty
cells is minimized by implementing the constraints in β rather than X. Furthermore, since
X is (n× 5) and β is (5× 2), Xβ = η is n× 2.

8.2.4 Interchanging the Three Methods

Continuing the bivariate probit example above, we only need to modify a few lines of code
to put these different schemes into effect. Using the default (memory-efficient) options, the
log-likelihood is:

1Why 5? In addition to the intercept term (a variable which is the same in either equation, and so counts
only as one variable), the unique variables are x1, x2, x3, and x4.
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bivariate.probit <- function(formula, data, start.val = NULL, ...) {

fml <- parse.formula(formula, model = "bivariate.probit")

D <- model.frame(fml, data = data)

X <- model.matrix(fml, data = D, eqn = c("mu1", "mu2")) # [1]

Xrho <- model.matrix(fml, data = D, eqn = "rho")

Y <- model.response(D)

terms <- attr(D, "terms")

start.val <- set.start(start.val, terms)

start.val <- put.start(start.val, 1, terms, eqn = "rho")

log.lik <- function(par, X, Y, terms) {

Beta <- parse.par(par, terms, eqn = c("mu1", "mu2")) # [2]

gamma <- parse.par(par, terms, eqn = "rho")

rho <- (exp(Xrho %*% gamma) - 1) / (1 + exp(Xrho %*% gamma))

mu <- X %*% Beta # [3]

llik <- 0

for (i in 1:nrow(mu)){

Sigma <- matrix(c(1, rho[i,], rho[i,], 1), 2, 2)

if (Y[i,1]==1)

if (Y[i,2]==1)

llik <- llik + log(pmvnorm(lower = c(0, 0), upper = c(Inf, Inf),

mean = mu[i,], corr = Sigma))

else

llik <- llik + log(pmvnorm(lower = c(0, -Inf), upper = c(Inf, 0),

mean = mu[i,], corr = Sigma))

else

if (Y[i,2]==1)

llik <- llik + log(pmvnorm(lower = c(-Inf, 0), upper = c(0, Inf),

mean = mu[i,], corr = Sigma))

else

llik <- llik + log(pmvnorm(lower = c(-Inf, -Inf), upper = c(0, 0),

mean = mu[i,], corr = Sigma))

}

return(llik)

}

res <- optim(start.val, log.lik, method = "BFGS",

hessian = TRUE, control = list(fnscale = -1),

X = X, Y = Y, terms = terms, ...)

fit <- model.end(res, D)

class(fit) <- "bivariate.probit"

fit

}
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If you find that the default (memory-efficient) method isn’t the best way to run your
model, you can use either the intuitive option or the computationally-efficient option by
changing just a few lines of code as follows:

� Intuitive option At Comment [1]:

X <- model.matrix(fml, data = D, shape = "stacked", eqn = c("mu1", "mu2"))

and at Comment [2],

Beta <- parse.par(par, terms, shape = "vector", eqn = c("mu1", "mu2"))

The line at Comment [3] remains the same as in the original version.

� Computationally-efficient option Replace the line at Comment [1] with

X <- model.matrix(fml, data = D, shape = "array", eqn = c("mu1", "mu2"))

At Comment [2]:

Beta <- parse.par(par, terms, shape = "vector", eqn = c("mu1", "mu2"))

At Comment [3]:

mu <- apply(X, 3, '%*%', Beta)

Even if your optimizer calls a C or FORTRAN routine, you can use combinations of
model.matrix() and parse.par() to set up the data structures that you need to obtain
the linear predictor (or your model’s equivalent) before passing these data structures to your
optimization routine.
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Chapter 9

Adding Models and Methods to Zelig

Zelig is highly modular. You can add methods to Zelig and, if you wish, release your programs
as a stand-alone package. By making your package compatible with Zelig, you will advertise
your package and help it achieve a widespread distribution.

This chapter assumes that your model is written as a function that takes a user-defined
formula and data set (see Chapter 8), and returns a list of output that includes (at the very
least) the estimated parameters and terms that describe the data used to fit the model. You
should choose a class (either S3 or S4 class) for this list of output, and provide appropriate
methods for generic functions such as summary(), print(), coef() and vcov().

To add new models to Zelig, you need to provide six R functions, illustrated in Figure
9.1. Let mymodel be a new model with class "myclass".

These functions are as follows:

1. zelig2mymodel() translates zelig() arguments into the arguments for mymodel().

2. mymodel() estimates your statistical procedure.

3. param.myclass() simulates parameters for your model. Alternatively, if your model’s
parameters consist of one vector with a correspondingly observed variance-covariance
matrix, you may write two simple functions to substitute for param.myclass():

(a) coef.myclass() to extract the coefficients from your model output, and

(b) vcov.myclass() to extract the variance-covariance matrix from your model.

4. qi.myclass() calculates expected values, simulates predicted values, and generates
other quantities of interest for your model (applicable only to models that take ex-
planatory variables).

5. plot.zelig.mymodel() to plot the simulated quantities of interest from your model.

6. A reference manual page to document the model. (See Section 9.3)

7. A function (describe.mymodel()) describing the inputs to your model, for use with a
graphical user interface. (See Section ??).
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Figure 9.1: Six functions (solid boxes) to implement a new Zelig model

Estimate zelig()

(1) zelig2mymodel()

(2) mymodel()

Interpret sim()

(3) param.myclass()

(4) qi.myclass()

Plot

(6) plot.zelig.mymodel()

8. An optional demo script mymodel.R which contains commented code for the models
contained in the example section of your reference manual page.

9.1 Making the Model Compatible with Zelig

You can develop a model, write the model-fitting function, and test it within the Zelig
framework without explicit intervention from the Zelig team. (We are, of course, happy to
respond to any questions or suggestions for improvement.)

Zelig’s modularity relies on two R programming conventions:

1. wrappers, which pass arguments from R functions to other R functions or to foreign
function calls (such as C, C++, or Fortran functions); and

2. classes, which tell generic functions how to handle objects of a given class.

Specific methods for R generic functions take the general form: method.class(), where
method is the name of the generic procedure to be performed and class is the class of
the object. You may define, for example, summary.contrib() to summarize the output of
your model. Note that for S4 classes, the name of generic functions does not have to be
method.class() so long as users can call them via method().
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To Work with zelig()

Zelig has implemented a unique method for incorporating new models which lets contribu-
tors test their models within the Zelig framework without any modification of the zelig()

function itself.
Using a wrapper function zelig2contrib() (where contrib is the name of your new

model), zelig2contrib() redefines the inputs to zelig() to work with the inputs you need
for your function contrib(). For example, if you type

zelig(..., model = "normal.regression")

zelig() looks for a zelig2normal.regression() wrapper in any environment (either at-
tached libraries or your workspace). If the wrapper exists, then zelig() runs the model.

If you have a pre-existing model, writing a zelig2contrib() function is quite easy.
Let’s say that your model is contrib(), and takes the following arguments: formula, data,
weights, and start. The zelig() function, in contrast, only takes the formula, data,
model, and by arguments. You may use the ... to pass additional arguments from zelig()

to zelig2contrib(), and <- NULL to omit the elements you do not need. Continuing the
Normal regression example from Section 8.1.2, let formula, model, and data be the inputs
to zelig(), M is the number of subsets, and ... are the additional arguments not defined
in the zelig() call, but passed to normal.regression().

zelig2normal.regression <- function(formula, model, data, M, ...) {

mf <- match.call(expand.dots = TRUE) # [1]

mf$model <- mf$M <- NULL # [2]

mf[[1]] <- as.name("normal.regression") # [3]

as.call(mf) # [4]

}

The bracketed numbers above correspond to the comments below:

1. Create a call (an expression to be evaluated) by creating a list of the arguments in
zelig2normal.regression(), including the extra arguments taken by normal.regression(),
but not by zelig(). All wrappers must take the same standardized arguments (formula,
model, data, and M), which may be used in the wrapper function to manipulate the
zelig() call into the normal.regression() call. Additional arguments to normal.regression(),
such as start.val are passed implicitly from zelig() using the ... operator.

2. Erase extraneous information from the call object mf. In this wrapper, model and M

are not used. In other models, these are used to further manipulate the call, and so
are included in the standard inputs to all wrappers.

3. Reassign the first element of the call (currently zelig2normal.regression) with the
name of the function to be evaluated, normal.regression().

4. Return the call to zelig(), which will evaluate the call for each multiply-imputed data
set, each subset defined in by, or simply data.
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If you use an S4 class to represent your model, say mymodel, within zelig.default(),
Zelig’s internal function, create.ZeligS4(), automatically creates a new S4 class called
ZeligS4mymodel in the global environment with two additional slots. These include zelig,
which stores the name of the model, and zelig.data, which stores the data frame if
save.data=TRUE and is empty otherwise. These names are taken from the original call.
This new output inherits the original class mymodel so all the generic functions associated
with mymodel should still work. If you would like to see an example, see the models imple-
mented using the VGAM package, such as multinomial probit.

To Work with setx()

In the case of setx(), most models will use setx.default(), which in turn relies on the
generic R function model.matrix(). For this procedure to work, your list of output must
include:

� terms, created by model.frame(), or manually;

� formula, the formula object input by the user;

� xlevels, which define the strata in the explanatory variables; and

� contrasts, an optional element which defines the type of factor variables used in the
explanatory variables. See help(contrasts) for more information.

If your model output does not work with setx.default(), you must write your own
setx.contrib() function. For example, models fit to multiply-imputed data sets have out-
put from zelig() of class "MI". The special setx.MI() wrapper pre-processes the zelig()

output object and passes the appropriate arguments to setx.default().

Compatibility with sim()

Simulating quantities of interest is an integral part of interpreting model results. To use the
functionality built into the Zelig sim() procedure, you need to provide a way to simulate
parameters (called a param() function), and a method for calculating or drawing quantities
of interest from the simulated parameters (called a qi() function).

Simulating Parameters Whether you choose to use the default method, or write a model-
specific method for simulating parameters, these functions require the same three inputs:

� object: the estimated model or zelig() output.

� num: the number of simulations.

� bootstrap: either TRUE or FALSE.

The output from param() should be either
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� If bootstrap = FALSE (default), an matrix with rows corresponding to simulations
and columns corresponding to model parameters. Any ancillary parameters should be
included in the output matrix.

� If bootstrap = TRUE, a vector containing all model parameters, including ancillary
parameters.

There are two ways to simulate parameters:

1. Use the param.default() function to extract parameters from the model and, if boot-
strapping is not selected, simulate coefficients using asymptotic normal approximation.
The param.default() function relies on two R functions:

(a) coef(): extracts the coefficients. Continuing the Normal regression example from
above, the appropriate coef.normal() function is simply:

coef.normal <- function(object)

object$coefficients

(b) vcov(): extracts the variance-covariance matrix. Again continuing the Poisson
example from above:

vcov.normal <- function(object)

object$variance

2. Alternatively, you can write your own param.contrib() function. This is appropriate
when:

(a) Your model has auxiliary parameters, such as σ in the case of the Normal distri-
bution.

(b) Your model performs some sort of correction to the coefficients or the variance-
covariance matrix, which cannot be performed in either the coef.contrib() or
the vcov.contrib() functions.

(c) Your model does not rely on asymptotic approximation to the log-likelihood. For
Bayesian Markov-chain monte carlo models, for example, the param.contrib()

function (param.MCMCzelig() in this case) simply extracts the model parameters
simulated in the model-fitting function.

Continuing the Normal example,

param.normal <- function(object, num = NULL, bootstrap = FALSE,

terms = NULL) {

if (!bootstrap) {

par <- mvrnorm(num, mu = coef(object), Sigma = vcov(object))

Beta <- parse.par(par, terms = terms, eqn = "mu")

82



sigma2 <- exp(parse.par(par, terms = terms, eqn = "sigma2"))

res <- cbind(Beta, sigma2)

}

else {

par <- coef(object)

Beta <- parse.par(par, terms = terms, eqn = "mu")

sigma2 <- exp(parse.par(par, terms = terms, eqn = "sigma2"))

res <- c(coef, sigma2)

}

res

}

Calculating Quantities of Interest All models require a model-specific method for cal-
culating quantities of interest from the simulated parameters. For a model of class contrib,
the appropriate qi() function is qi.contrib(). This function should calculate, at the bare
minimum, the following quantities of interest:

� ev: the expected values, calculated from the analytic solution for the expected value
as a function of the systematic component and ancillary parameters.

� pr: the predicted values, drawn from a distribution defined by the predicted values. If
R does not have a built-in random generator for your function, you may take a random
draw from the uniform distribution and use the inverse CDF method to calculate
predicted values.

� fd: first differences in the expected value, calculated by subtracting the expected values
given the specified x from the expected values given x1.

� ate.ev: the average treatment effect calculated using the expected values ev. This is
simply y - ev, averaged across simulations for each observation.

� ate.pr: the average treatment effect calculated using the predicted values pr. This is
simply y - pr, averaged across simulations for each observation.

The required arguments for the qi() function are:

� object: the zelig output object.

� par: the simulated parameters.

� x: the matrix of explanatory variables (created using setx()).

� x1: the optional matrix of alternative values for first differences (also created using
setx()). If first differences are inappropriate for your model, you should put in a
warning() or stop() if x1 is not NULL.
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� y: the optional vector or matrix of dependent variables (for calculating average treat-
ment effects). If average treatment effects are inappropriate for your model, you should
put in a warning() or stop() if conditional prediction has been selected in the setx()
step.

Continuing the Normal regression example from above, the appropriate qi.normal()

function is as follows:

qi.normal <- function(object, par, x, x1 = NULL, y = NULL) {

Beta <- parse.par(par, eqn = "mu") # [1]

sigma2 <- parse.par(par, eqn = "sigma2") # [2]

ev <- Beta %*% t(x) # [3a]

pr <- matrix(NA, ncol = ncol(ev), nrow = nrow(ev))

for (i in 1:ncol(ev))

pr[,i] <- rnorm(length(ev[,i]), mean = ev[,i], # [4]

sigma = sd(sigma2[i]))

qi <- list(ev = ev, pr = pr)

qi.name <- list(ev = "Expected Values: E(Y|X)",

pr = "Predicted Values: Y|X")

if (!is.null(x1)){

ev1 <- par %*% t(x1) # [3b]

qi$fd <- ev1 - ev

qi.name$fd <- "First Differences in Expected Values: E(Y|X1)-E(Y|X)"

}

if (!is.null(y)) {

yvar <- matrix(rep(y, nrow(par)), nrow = nrow(par), byrow = TRUE)

tmp.ev <- yvar - qi$ev

tmp.pr <- yvar - qi$pr

qi$ate.ev <- matrix(apply(tmp.ev, 1, mean), nrow = nrow(par))

qi$ate.pr <- matrix(apply(tmp.pr, 1, mean), nrow = nrow(par))

qi.name$ate.ev <- "Average Treatment Effect: Y - EV"

qi.name$ate.pr <- "Average Treatment Effect: Y - PR"

}

list(qi=qi, qi.name=qi.name)

}

There are five lines of code commented above. By changing these five lines in the following
four ways, you can write qi() function appropriate to almost any model:

1. Extract any systematic parameters by substituting the name of your systematic pa-
rameter (defined in describe.mymodel()).

2. Extract any ancillary parameters (defined in describe.mymodel()) by substituting
their names here.
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3. Calculate the expected value using the inverse link function and η = Xβ. (For the
normal model, this is linear.) You will need to make this change in two places, at
Comment [3a] and [3b].

4. Replace rnorm() with a function that takes random draws from the stochastic compo-
nent of your model.

9.2 Getting Ready for the GUI

Zelig can work with a variety of graphical user interfaces (GUIs). GUIs work by knowing
a priori what a particular model accepts, and presenting only those options to the user in
some sort of graphical interface. Thus, in order for your model to work with a GUI, you
must describe your model in terms that the GUI can understand. For models written using
the guidelines in Chapter 8, your model will be compatible with (at least) the Virtual Data
Center GUI. For pre-existing models, you will need to create a describe.*() function for
your model following the examples in Section ??.

9.3 Formatting Reference Manual Pages

One of the primary advantages of Zelig is that it fully documents the included models, in
contrast to the programming-orientation of R documentation which is organized by function.
Thus, we ask that Zelig contributors provide similar documentation, including the syntax
and arguments passed to zelig(), the systematic and stochastic components to the model,
the quantities of interest, the output values, and further information (including references).
There are several ways to provide this information:

� If you have an existing package documented using the .Rd help format, help.zelig()
will automatically search R-help in addition to Zelig help.

� If you have an existing package documented using on-line HTML files with static URLs
(like Zelig or MatchIt), you need to provide a PACKAGE.url.tab file which is a two-
column table containing the name of the function in the first column and the url in
the second. (Even though the file extension is .url.tab, the file should be a tab- or
space-delimited text file.) For example:

command http://gking.harvard.edu/zelig/docs/Main_Commands.html

model http://gking.harvard.edu/zelig/docs/Specific_Models.html

If you wish to test to see if your .url.tab files works, simply place it in your R
library/Zelig/data/ directory. (You do not need to reinstall Zelig to test your .url.tab
file.)
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� Preferred method: You may provide a LATEX2ε .tex file. This document uses the
book style and supports commands from the following packages: graphicx, natbib,
amsmath, amssymb, verbatim, epsf, and html. Because model pages are incorporated
into this document using \include{}, you should make sure that your document com-
piles before submitting it. Please adhere to the following conventions for your model
page:

1. All mathematical formula should be typeset using the equation* and array,
eqnarray*, or align environments. Please avoid displaymath. (It looks funny
in html.)

2. All commands or R objects should use the texttt environment.

3. The model begins as a subsection of a larger document, and sections within the
model page are of sub-subsection level.

4. For stylistic consistency, please avoid using the description environment.

Each LATEX model page should include the following elements. Let contrib specify
the new model.

Help File Template

\subsection{{\tt contrib}: Full Name for [type] Dependent Variables}

\label{contrib}

\subsubsection{Syntax}

\subsubsection{Examples}

\begin{enumerate}

\item First Example

\item Second Example

\end{enumerate}

\subsubsection{Model}

\begin{itemize}

\item The observation mechanism, if applicable.

\item The stochastic component.

\item The systematic component.

\end{itemize}

\subsubsection{Quantities of Interest}

\begin{itemize}

\item The expected value of your distribution, including the formula

for the expected value as a function of the systemic component and
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ancillary paramters.

\item The predicted value drawn from the distribution defined by the

corresponding expected value.

\item The first difference in expected values, given when x1 is specified.

\item Other quantities of interest.

\end{itemize}

\subsubsection{Output Values}

\begin{itemize}

\item From the {\tt zelig()} output stored in {\tt z.out}, you may

extract:

\begin{itemize}

\item

\item

\end{itemize}

\item From {\tt summary(z.out)}, you may extract:

\begin{itemize}

\item

\item

\end{itemize}

\item From the {\tt sim()} output stored in {\tt s.out}:

\begin{itemize}

\item

\item

\end{itemize}

\end{itemize}

\subsubsection{Further Information}

\subsubsection{Contributors}
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Part III

Reference Manual
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Chapter 10

Main Commands

Help for each command in Zelig and R is available through help.zelig(). For example, typ-
ing help.zelig(setx) will launch a web browser with the appropriate reference manual page
for the setx() command. (Occasionally, you may need to use, for example, help(print)
rather than help.zelig(print), to access the R help page instead of the default Zelig help
page.)

89



10.1 setx: Setting Explanatory Variable Values

Description

The setx command uses the variables identified in the formula generated by zelig and
sets the values of the explanatory variables to the selected values. Use setx after zelig
and before sim to simulate quantities of interest.

Usage

x.out <- setx(object, fn = list(numeric = mean, ordered = median,

others = mode),

data = NULL, cond = FALSE, ...)

Arguments

object the saved output from zelig.

fn a list of functions to apply to three types of variables:

numeric numeric variables are set to their mean by default, but you may select
any mathematical function to apply to numeric variables.

ordered ordered factors are set to their meidan by default, and most mathe-
matical operations will work on them. If you select ordered = mean,
however, setx will default to median with a warning.

other variables may consist of unordered factors, character strings, or logical
variables. The other variables may only be set to their mode. If you
wish to set one of the other variables to a specific value, you may do
so using ... below.

In the special case fn = NULL, setx will return all of the observations
without applying any function to the data.

data a new data frame used to set the values of explanatory variables. If data
= NULL (the default), the data frame called in zelig is used.

cond a logical value indicating whether unconditional (default) or conditional
(choose cond = TRUE) prediction should be performed. If you choose cond
= TRUE, setx will coerce fn = NULL and ignore the additional arguments
in .... If cond = TRUE and data = NULL, setx will prompt you for a
data frame.

... user-defined values of specific variables overwriting the default values set
by the function fn. For example, adding var1 = mean(data$var1) or x1
= 12 explicitly sets the value of x1 to 12. In addition, you may specify
one explanatory variable as a range of values, creating one observation for
every unique value in the range of values.

90



Value

For unconditional prediction, x.out is a model matrix based on the specified values for
the explanatory variables. For multiple analyses (i.e., when choosing the by option in
zelig, setx returns the selected values calculated over the entire data frame. If you wish
to calculate values over just one subset of the data frame, the 5th subset for example,
you may use: x.out <- setx(z.out[[5]])

For conditional prediction, x.out includes the model matrix and the dependent variables.
For multiple analyses (when choosing the by option in zelig), setx returns the observed
explanatory variables in each subset.

Author(s)

Kosuke Imai <〈kimai@princeton.edu〉>; Gary King <〈king@harvard.edu〉>; Olivia Lau
<〈olau@fas.harvard.edu〉>

See Also

The full Zelig manual may be accessed online at http://gking.harvard.edu/zelig.

Examples

# Unconditional prediction:
data(turnout)
z.out <- zelig(vote ~ race + educate, model = "logit", data = turnout)
x.out <- setx(z.out)
s.out <- sim(z.out, x = x.out)

# Unconditional prediction with all observations:
x.out <- setx(z.out, fn = NULL)
s.out <- sim(z.out, x = x.out)

# Unconditional prediction with out of sample data:
z.out <- zelig(vote ~ race + educate, model = "logit",

data = turnout[1:1000,])
x.out <- setx(z.out, data = turnout[1001:2000,])
s.out <- sim(z.out, x = x.out)

# Using a user-defined function in fn:
## Not run:
quants <- function(x)
quantile(x, 0.25)

x.out <- setx(z.out, fn = list(numeric = quants))
## End(Not run)
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# Conditional prediction:
## Not run:
library(MatchIt)
data(lalonde)
match.out <- matchit(treat ~ age + educ + black + hispan + married +

nodegree + re74 + re75, data = lalonde)
z.out <- zelig(re78 ~ distance, data = match.data(match.out, "control"),

model = "ls")
x.out <- setx(z.out, fn = NULL, data = match.data(match.out, "treat"),

cond = TRUE)
s.out <- sim(z.out, x = x.out)
## End(Not run)
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10.2 sim: Simulating Quantities of Interest

Description

Simulate quantities of interest from the estimated model output from zelig() given
specified values of explanatory variables established in setx(). For classical maximum
likelihood models, sim() uses asymptotic normal approximation to the log-likelihood.
For Bayesian models, Zelig simulates quantities of interest from the posterior density,
whenever possible. For robust Bayesian models, simulations are drawn from the identified
class of Bayesian posteriors. Alternatively, you may generate quantities of interest using
bootstrapped parameters.

Usage

s.out <- sim(object, x, x1 = NULL, num = c(1000, 100), prev = NULL,

bootstrap = FALSE, bootfn = NULL, ...)

Arguments

object the output object from zelig.

x values of explanatory variables used for simulation, generated by setx.

x1 optional values of explanatory variables (generated by a second call of
setx), used to simulate first differences and risk ratios. (Not available for
conditional prediction.)

num the number of simulations, i.e., posterior draws. If the num argument
is omitted, sim draws 1,000 simulations by if bootstrap = FALSE (the
default), or 100 simulations if bootstrap = TRUE. You may increase this
value to improve accuracy. (Not available for conditional prediction.)

bootstrap a logical value indicating if parameters should be generated by re-fitting
the model for bootstrapped data, rather than from the likelihood or pos-
terior. (Not available for conditional prediction.)

bootfn a function which governs how the data is sampled, re-fits the model, and
returns the bootstrapped model parameters. If bootstrap = TRUE and
bootfn = NULL, sim will sample observations from the original data (with
replacement) until it creates a sampled dataset with the same number of
observations as the original data. Alternative bootstrap methods include
sampling the residuals rather than the observations, weighted sampling,
and parametric bootstrapping. (Not available for conditional prediction.)

... additional optional arguments passed to boot.
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Value

The output stored in s.out varies by model. Use the names command to view the output
stored in s.out. Common elements include:

x the setx values for the explanatory variables, used to calculate the quan-
tities of interest (expected values, predicted values, etc.).

x1 the optional setx object used to simulate first differences, and other
model-specific quantities of interest, such as risk-ratios.

call the options selected for sim, used to replicate quantities of interest.

zelig.call the original command and options for zelig, used to replicate analyses.

num the number of simulations requested.

par the parameters (coefficients, and additional model-specific parameters).
You may wish to use the same set of simulated parameters to calculate
quantities of interest rather than simulating another set.

qi$ev simulations of the expected values given the model and x.

qi$pr simulations of the predicted values given by the fitted values.

qi$fd simulations of the first differences (or risk difference for binary models)
for the given x and x1. The difference is calculated by subtracting the
expected values given x from the expected values given x1. (If do not
specify x1, you will not get first differences or risk ratios.)

qi$rr simulations of the risk ratios for binary and multinomial models. See
specific models for details.

qi$ate.ev simulations of the average expected treatment effect for the treatment
group, using conditional prediction. Let ti be a binary explanatory vari-
able defining the treatment (ti = 1) and control (ti = 0) groups. Then
the average expected treatment effect for the treatment group is

1

n

n∑
i=1

[Yi(ti = 1)− E[Yi(ti = 0)] | ti = 1 ],

where Yi(ti = 1) is the value of the dependent variable for observation i in
the treatment group. Variation in the simulations are due to uncertainty
in simulating E[Yi(ti = 0)], the counterfactual expected value of Yi for ob-
servations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

qi$ate.pr simulations of the average predicted treatment effect for the treatment
group, using conditional prediction. Let ti be a binary explanatory vari-
able defining the treatment (ti = 1) and control (ti = 0) groups. Then
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the average predicted treatment effect for the treatment group is

1

n

n∑
i=1

[Yi(ti = 1)− ̂Yi(ti = 0) | ti = 1 ],

where Yi(ti = 1) is the value of the dependent variable for observation i in
the treatment group. Variation in the simulations are due to uncertainty

in simulating ̂Yi(ti = 0), the counterfactual predicted value of Yi for ob-
servations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

In the case of censored Y in the exponential, Weibull, and lognormal models, sim first
imputes the uncensored values for Y before calculating the ATE.

You may use the $ operator to extract any of the above from s.out. For example,
s.out$qi$ev extracts the simulated expected values.

Author(s)

Kosuke Imai <〈kimai@princeton.edu〉>; Gary King <〈king@harvard.edu〉>; Olivia Lau
<〈olau@fas.harvard.edu〉>

See Also

The full Zelig at http://gking.harvard.edu/zelig, and boot.
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10.3 plot.zelig: Graphing Quantities of Interest

Description

The zelig method for the generic plot command generates default plots for sim output
with one-observation values in x and x1.

Usage

## S3 method for class 'zelig':

plot(x, xlab = "", user.par = FALSE, ...)

Arguments

x stored output from sim. If the x$x or x$x1 values stored in the object
contain more than one observation, plot.zelig will return an error. For
linear or generalized linear models with more than one observation in x$x

and optionally x$x1, you may use plot.ci.

xlab a character string for the x-axis label for all graphs.

user.par a logical value indicating whether to use the default Zelig plotting pa-
rameters (user.par = FALSE) or user-defined parameters (user.par =

TRUE), set using the par function prior to plotting.

... Additional parameters passed to plot.default. Because plot.zelig

primarily produces diagnostic plots, many of these parameters are hard-
coded for convenience and presentation.

Value

Depending on the class of model selected, plot.zelig will return an on-screen window
with graphs of the various quantities of interest. You may save these plots using the com-
mands described in the Zelig manual (available at http://gking.harvard.edu/zelig).

Author(s)

Kosuke Imai <〈kimai@princeton.edu〉>; Gary King <〈king@harvard.edu〉>; Olivia Lau
<〈olau@fas.harvard.edu〉>

See Also

The full Zelig manual at http://gking.harvard.edu/zelig and plot, lines, and par.
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10.4 print: Printing Quantities of Interest

Description

The print command formats summary output and allows users to specify the number of
decimal places as an optional argument.

Syntax

> print(x, digits = 3, print.x = FALSE)

Arguments

� x: the object to be printed may be z.out output from zelig(), x.out output from
setx(), s.out output from sim(), or other R data structures.

� digits: the minimum number of significant digits to return for all elements of x < 0.
By default, print() avoids scientific notation, but setting the number of digits to 1 will
frequently force output in scientific notation. The number of digits is not the number
of significant digits for all output values, but the minimum number of significant digits
for the smallest value in x between -1 and 1; this governs the number of significant
digits in the rest of the values with decimal output.

� print.x: a logical value for sim() output, which specifies whether to print a summary
(print.x = FALSE, the default) of the x and x1 inputs to sim(), or the complete set
of inputs (optionally, print.x = TRUE).

Examples

> print(summary(z.out), digits = 2)

> print(summary(s.out), digits = 3, print.x = TRUE)

See Also

Advanced users may wish to refer to help(print).

Contributors

Kosuke Imai, Gary King, and Olivia Lau added print methods for sim() output, and
summary() output for Zelig objects.
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10.5 repl: Replicating Analyses

Description

The generic function repl command takes zelig or sim output objects and replicates
(literally, re-runs) the entire analysis. The results should be an output object identical
to the original input object in the case of zelig output. In the case of sim output, the
replicated analyses may differ slightly due to stochastic randomness in the simulation
procedure.

Usage

repl(object, data, ...)

## Default S3 method:

repl(object, data = NULL, ...)

## S3 method for class 'zelig':

repl(object, data = NULL, prev = NULL, x = NULL, x1 = NULL,

bootfn = NULL, ...)

Arguments

object Stored output from either zelig or sim.

data You may manually input the data frame name rather than allowing repl

to draw the data frame name from the object to be replicated.

prev When replicating sim output, you may optionally use the previously sim-
ulated parameters to calculate the quantities of interest rather than sim-
ulating a new set of parameters. For all models, this should produce
identical quantities of interest. In addition, for if the parameters were
bootstrapped in the original analysis, this will save a considerable amount
of time.

x When replicating sim output, you may optionally use an alternative setx
value for the x input.

x1 When replicating sim output, you may optionally use an alternative setx
object for the x1 input to replicating the sim object.

bootfn When replicating sim output with bootstrapped parameters, you should
manually specify the bootfn if a non-default option was used.

... Additional arguments passed to either zelig or sim.

Value

For zelig output, repl will create output that is in every way identical to the original
input. You may check to see whether they are identical by using the identical command.

98



For sim output, repl output will be will be identical to the original object if you choose
not to simulate new parameters, and instead choose to calculate quantities of interest
using the previously simulated parameters (using the prev option. If you choose to
simulate new parameters, the summary statistics for each quantity of interest should be
identical, up to a random approximation error. As the number of simulations increases,
this error decreases.

Author(s)

Kosuke Imai <〈kimai@princeton.edu〉>; Gary King <〈king@harvard.edu〉>; Olivia Lau
<〈olau@fas.harvard.edu〉>

See Also

zelig, setx, and sim. In addition, the full Zelig manual may be accessed online at
http://gking.harvard.edu/zelig.

Examples

data(turnout)
z.out <- zelig(vote ~ race + educate, model = "logit", data = turnout[1:1000,])
x.out <- setx(z.out)
s.out <- sim(z.out, x = x.out)
z.rep <- repl(z.out)
identical(z.out$coef, z.rep$coef)
z.alt <- repl(z.out, data = turnout[1001:2000,])
s.rep <- repl(s.out, prev = s.out$par)
identical(s.out$ev, s.rep$ev)
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Chapter 11

Supplementary Commands
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11.1 matchit: Create matched data

Description

MatchIt implements the suggestions of ? for improving parametric statistical models by
preprocessing data with semi-parametric matching methods. It uses a sophisticated array of
matching methods to select well-matched treated and control units from the original data set,
thus reducing the dependence of causal inferences on functional form and other parametric
assumptions. After pre-processing, MatchIt output can be used just like any other dataset
in Zelig to estimate causal effects. In this way, MatchIt improves rather than replaces
existing parametric models, reducing sensitivity to modeling assumptions. The matching
methods available in MatchIt include exact matching on all covariates, nearest neighbor
matching, subclassification, optimal matching, genetic matching, and full matching. An
outline of all options are provided below; see the full documentation (available at http:

//gking.harvard.edu/matchit/) for more details.

Syntax

> m.out <- matchit(formula, data, method = "nearest", verbose = FALSE, ...)

Arguments

Arguments for All Matching Methods

� formula: formula used to calculate the distance measure for matching. It takes the
usual syntax of R formulas, treat ~ x1 + x2, where treat is a binary treatment
indicator, and x1 and x2 are the pre-treatment covariates. Both the treatment indicator
and pre-treatment covariates must be contained in the same data frame, which is
specified as data (see below). All of the usual R syntax for formulas work here. For
example, x1:x2 represents the first order interaction term between x1 and x2, and
I(x1 ^ 2) represents the square term of x1. See help(formula) for details.

� data: the data frame containing the variables called in formula.

� method: the matching method (default = "nearest", nearest neighbor matching).
Currently, "exact" (exact matching), "full" (full matching), "nearest" (nearest
neighbor matching), "optimal" (optimal matching), "subclass" (subclassification),
and "genetic" (genetic matching) are available. Note that within each of these match-
ing methods, MatchIt offers a variety of options. See below for more details.

� verbose: a logical value indicating whether to print the status of the matching algo-
rithm (default = FALSE).
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Additional Arguments for Specification of Distance Measures The following ar-
guments specify distance measures that are used for matching methods. These arguments
apply to all matching methods except exact matching.

� distance: the method used to estimate the distance measure (default = "logit",
logistic regression) or a numerical vector of user’s own distance measure. Before using
any of these techniques, it is best to understand the theoretical groundings of these
techniques and to evaluate the results. Most of these methods (such as logistic or
probit regression) estimate the propensity score, defined as the probability of receiving
treatment, conditional on the covariates. Available methods include:

– "mahalanobis": the Mahalanobis distance measure.

– binomial generalized linear models with one of the following link functions:

* "logit": logistic link

* "linear.logit": logistic link with linear propensity score)1

* "probit": probit link

* "linear.probit": probit link with linear propensity score

* "cloglog": complementary log-log link

* "linear.cloglog": complementary log-log link with linear propensity score

* "log": log link

* "linear.log": log link with linear propensity score

* "cauchit" Cauchy CDF link

* "linear.cauchit" Cauchy CDF link with linear propensity score

– Choose one of the following generalized additive models (see help(gam) for more
options).

* "GAMlogit": logistic link

* "GAMlinear.logit": logistic link with linear propensity score

* "GAMprobit": probit link

* "GAMlinear.probit": probit link with linear propensity score

* "GAMcloglog": complementary log-log link

* "GAMlinear.cloglog": complementary log-log link with linear propensity
score

* "GAMlog": log link

* "GAMlinear.log": log link with linear propensity score,

* "GAMcauchit": Cauchy CDF link

* "GAMlinear.cauchit": Cauchy CDF link with linear propensity score

– "nnet": neural network model. See help(nnet) for more options.

1The linear propensity scores are obtained by transforming back onto a linear scale.
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– "rpart": classification trees. See help(rpart) for more options.

� distance.options: optional arguments for estimating the distance measure. The
input to this argument should be a list. For example, if the distance measure is es-
timated with a logistic regression, users can increase the maximum IWLS iterations
by distance.options = list(maxit = 5000). Find additional options for general
linear models using help(glm) or help(family), for general additive models us-
ing help(gam), for neutral network models help(nnet), and for classification trees
help(rpart).

� discard: specifies whether to discard units that fall outside some measure of support
of the distance measure (default = "none", discard no units). Discarding units may
change the quantity of interest being estimated. Enter a logical vector indicating which
unit should be discarded or choose from the following options:

– "none": no units will be discarded before matching. Use this option when the
units to be matched are substantially similar, such as in the case of matching treat-
ment and control units from a field experiment that was close to (but not fully)
randomized (e.g., Imai 2005), when caliper matching will restrict the donor pool,
or when you do not wish to change the quantity of interest and the parametric
methods to be used post-matching can be trusted to extrapolate.

– "hull.both": all units that are not within the convex hull will be discarded. We
recommend that this option be used with observational data sets.

– "both": all units (treated and control) that are outside the support of the distance
measure will be discarded.

– "hull.control": only control units that are not within the convex hull of the
treated units will be discarded.

– "control": only control units outside the support of the distance measure of
the treated units will be discarded. Use this option when the average treatment
effect on the treated is of most interest and when you are unwilling to discard
non-overlapping treatment units (which would change the quantity of interest).

– "hull.treat": only treated units that are not within the convex hull of the
control units will be discarded.

– "treat": only treated units outside the support of the distance measure of the
control units will be discarded. Use this option when the average treatment effect
on the control units is of most interest and when unwilling to discard control
units.

� reestimate: If FALSE (default), the model for the distance measure will not be re-
estimated after units are discarded. The input must be a logical value. Re-estimation
may be desirable for efficiency reasons, especially if many units were discarded and so
the post-discard samples are quite different from the original samples.
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Additional Arguments for Subclassification

� sub.by: criteria for subclassification. Choose from: "treat" (default), the number of
treatment units; "control", the number of control units; or "all", the total number
of units.

� subclass: either a scalar specifying the number of subclasses, or a vector of probabil-
ities bounded between 0 and 1, which create quantiles of the distance measure using
the units in the group specified by sub.by (default = subclass = 6).

Additional Arguments for Nearest Neighbor Matching

� m.order: the order in which to match treatment units with control units.

– "largest" (default): matches from the largest value of the distance measure to
the smallest.

– "smallest": matches from the smallest value of the distance measure to the
largest.

– "random": matches in random order.

� replace: logical value indicating whether each control unit can be matched to more
than one treated unit (default = replace = FALSE, each control unit is used at most
once – i.e., sampling without replacement). For matching with replacement, use
replace = TRUE.

� ratio: the number of control units to match to each treated unit (default = 1). If
matching is done without replacement and there are fewer control units than ratio

times the number of eligible treated units (i.e., there are not enough control units for
the specified method), then the higher ratios will have NA in place of the matching unit
number in match.matrix.

� exact: variables on which to perform exact matching within the nearest neighbor
matching (default = NULL, no exact matching). If exact is specified, only matches
that exactly match on the covariates in exact will be allowed. Within the matches
that match on the variables in exact, the match with the closest distance measure
will be chosen. exact should be entered as a vector of variable names (e.g., exact =

c("X1", "X2")).

� caliper: the number of standard deviations of the distance measure within which to
draw control units (default = 0, no caliper matching). If a caliper is specified, a control
unit within the caliper for a treated unit is randomly selected as the match for that
treated unit. If caliper != 0, there are two additional options:

– calclosest: whether to take the nearest available match if no matches are avail-
able within the caliper (default = FALSE).
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– mahvars: variables on which to perform Mahalanobis-metric matching within each
caliper (default = NULL). Variables should be entered as a vector of variable names
(e.g., mahvars = c("X1", "X2")). If mahvars is specified without caliper, the
caliper is set to 0.25.

� subclass and sub.by: See the options for subclassification for more details on these
options. If a subclass is specified within method = "nearest", the matched units
will be placed into subclasses after the nearest neighbor matching is completed.

Additional Arguments for Optimal Matching

� ratio: the number of control units to be matched to each treatment unit (default =
1).

� ...: additional inputs that can be passed to the fullmatch() function in the optmatch
package. See help(fullmatch) or http://www.stat.lsa.umich.edu/˜bbh/optmatch.html
for details.

Additional Arguments for Full Matching

� ...: additional inputs that can be passed to the fullmatch() function in the optmatch
package. See help(fullmatch) or http://www.stat.lsa.umich.edu/˜bbh/optmatch.html
for details.

Additional Arguments for Genetic Matching The available options are listed below.

� ratio: the number of control units to be matched to each treatment unit (default =
1).

� ...: additional minor inputs that can be passed to the GenMatch() function in the
Matching package. See help(GenMatch) or http://sekhon.polisci.berkeley.edu/library/Matching/html/GenMatch.html
for details.

Output Values

Regardless of the type of matching performed, the matchit output object contains the
following elements:2

� call: the original matchit() call.

� formula: the formula used to specify the model for estimating the distance measure.

� model: the output of the model used to estimate the distance measure. summary(m.out$model)
will give the summary of the model where m.out is the output object from matchit().

2When inapplicable or unnecessary, these elements may equal NULL. For example, when exact matching,
match.matrix = NULL.
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� match.matrix: an n1× ratio matrix where:

– the row names represent the names of the treatment units (which match the row
names of the data frame specified in data).

– each column stores the name(s) of the control unit(s) matched to the treatment
unit of that row. For example, when the ratio input for nearest neighbor or
optimal matching is specified as 3, the three columns of match.matrix represent
the three control units matched to one treatment unit).

– NA indicates that the treatment unit was not matched.

� discarded: a vector of length n that displays whether the units were ineligible for
matching due to common support restrictions. It equals TRUE if unit i was discarded,
and it is set to FALSE otherwise.

� distance: a vector of length n with the estimated distance measure for each unit.

� weights: a vector of length n with the weights assigned to each unit in the matching
process. Unmatched units have weights equal to 0. Matched treated units have weight
1. Each matched control unit has weight proportional to the number of treatment units
to which it was matched, and the sum of the control weights is equal to the number of
uniquely matched control units.

� subclass: the subclass index in an ordinal scale from 1 to the total number of sub-
classes as specified in subclass (or the total number of subclasses from full or exact
matching). Unmatched units have NA.

� q.cut: the subclass cut-points that classify the distance measure.

� treat: the treatment indicator from data (the left-hand side of formula).

� X: the covariates used for estimating the distance measure (the right-hand side of
formula). When applicable, X is augmented by covariates contained in mahvars and
exact.

Contributors

If you use MatchIt, please cite

Ho, D., Imai, K., King, G., and Stuart, E. (2007), “Matching as Nonparametric
Preprocessing for Reducing Model Dependence in Parametric Causal Infer-
ence,”Political Analysis, 15, 199–236, http://gking.harvard.edu/files/abs/matchp-
abs.shtml and

The convex.hull discard option is implemented via the WhatIf package (??King and
Zeng 2006b). Generalized linear distance measures are implemented via the stats package
(Venables and Ripley 2002). Generalized additive distance measures are implemented via
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the mcgv package (Hastie and Tibshirani 1990). The neural network distance measure is
implemented via the nnet package (Ripley 1996). The classification trees distance measure
is implemented via the rpart package (Breiman et al. 1984). Full and optimal matching are
implemented via the optmatch package (Hansen 2004). Genetic matching is implemented
via the Matching package (Diamond and Sekhon 2005).
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11.2 mi: Bundle multiply imputed data sets as a list

Description

The code mi bundles multiply imputed data sets as a list for further analysis.

Usage

mi(...)

Arguments

... multiply imputed data sets, separated by commas. The arguments can
be tagged by name=data where name is the element named used for the
data set data.

Value

The list containing each multiply imputed data set as an element. The class name is mi.
The list can be inputted into zelig for statistical analysis with multiply imputed data
sets. See zelig for details.

Author(s)

Kosuke Imai <〈kimai@princeton.edu〉>; Gary King <〈king@harvard.edu〉>; Olivia Lau
<〈olau@fas.harvard.edu〉>

See Also

The full Zelig manual is available at http://gking.harvard.edu/zelig.

Examples

data(immi1, immi2, immi3, immi4, immi5)
mi(immi1, immi2, immi3, immi4, immi5)
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11.3 network: Format matricies into a data frame for

social network analysis

Description

This function accepts individual matricies as its inputs, combining the input matricies
into a single data frame which can then be used in the data argument for social network
analysis (models "netlm" and "netlogit") in Zelig.

Usage

network(...)

Arguments

... matricies representing variables, with rows and columns corresponding to
individuals. These can be given as named arguments and should be given
in the order the in which the user wishes them to appear in the output
data frame.

Value

The network function creates a data frame which contains matricies instead of vectors
as its variables. Inputs to the function should all be square matricies and can be given
as named arguments.

Author(s)

Skyler J. Cranmer

See Also

The full Zelig manual is available at http://gking.harvard.edu/zelig.

Examples

## Not run:
## Let Var1, Var2, Var3, Var4, and Var5 be matrices
friendship <- network(Var1, Var2, Var3, Var4, Var5)
## End(Not run)
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11.4 plot.ci: Plotting Vertical confidence Intervals

Description

The plot.ci command generates vertical confidence intervals for linear or generalized
linear univariate response models.

Usage

plot.ci(x, CI = 95, qi = "ev", main = "", ylab = NULL, xlab = NULL,

xlim = NULL, ylim = NULL, col = c("red", "blue"), ...)

Arguments

x stored output from sim. The x$x and optional x$x1 values used to gen-
erate the sim output object must have more than one observation.

CI the selected confidence interval. Defaults to 95 percent.

qi the selected quantity of interest. Defaults to expected values.

main a title for the plot.

ylab label for the y-axis.

xlab label for the x-axis.

xlim limits on the x-axis.

ylim limits on the y-axis.

col a vector of at most two colors for plotting the expected value given by
x and the alternative set of expected values given by x1 in sim. If the
quantity of interest selected is not the expected value, or x1 = NULL, only
the first color will be used.

... Additional parameters passed to plot.

Value

For all univariate response models, plot.ci() returns vertical confidence intervals over a
specified range of one explanatory variable. You may save this plot using the commands
described in the Zelig manual (http://gking.harvard.edu/zelig).

Author(s)

Kosuke Imai <〈kimai@princeton.edu〉>; Gary King <〈king@harvard.edu〉>; Olivia Lau
<〈olau@fas.harvard.edu〉>
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See Also

The full Zelig manual is available at http://gking.harvard.edu/zelig, and users may
also wish to see plot, lines.

Examples

data(turnout)
z.out <- zelig(vote ~ race + educate + age + I(age^2) + income,

model = "logit", data = turnout)
age.range <- 18:95
x.low <- setx(z.out, educate = 12, age = age.range)
x.high <- setx(z.out, educate = 16, age = age.range)
s.out <- sim(z.out, x = x.low, x1 = x.high)
plot.ci(s.out, xlab = "Age in Years",

ylab = "Predicted Probability of Voting",
main = "Effect of Education and Age on Voting Behavior")

legend(45, 0.52, legend = c("College Education (16 years)",
"High School Education (12 years)"), col = c("blue","red"),
lty = c("solid"))
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11.5 plot.surv: Plotting Confidence Intervals for Sur-

vival Curves

Description

The plot.surv command generates confidence intervals for Kaplan-Meier survival curves

Usage

plot.surv(x, duration, censor, type = "line", plotcensor=TRUE,

plottimes = FALSE, int = c(0.025,0.975), ...)

Arguments

x output from sim stored as a list. Each element of the list is the sim output
for a particular survival curve.

duration the duration variable (e.g. lifetime, survival, etc.).

censor the censored data

type the type of confidence interval. Defaults to "line", which draws vertical
confidence intervals at observed event times. "poly" draws confidence
regions using polygons.

plotcensor default is TRUE. Plots censoring times as a rug object.

plottimes default is FALSE. Plots step function with indicators at observed event
times.

int vector of quantile limits for the confidence interval. Default is 95% inter-
val.

... Additional parameters passed to plot.

Value

For survival models, plot.surv() returns vertical confidence intervals or polygon survival
regions for Kaplan-Meier survival curves. You may save this plot using the commands
described in the Zelig manual (http://gking.harvard.edu/zelig).

Author(s)

John A. Graves <〈graveja0@gmail.com〉>

See Also

The full Zelig manual is available at http://gking.harvard.edu/zelig, and users may
also wish to see plot, lines.
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Examples

## Not run:
data(coalition)
z.out1 <- zelig(Surv(duration,ciep12)~invest+numst2+crisis,
robust=TRUE,cluster="polar",model="coxph",data=coalition)
low <- setx(z.out1,numst2=0)
high <- setx(z.out1,numst2=1
# Simulate Survival Curves for Each Group
s.out1 <- sim(z.out1,x=low)
s.out2 <- sim(z.out1,x=high)

# Organize simulated output as a list
out <- list(s.out1,s.out2)

plot.surv(x = out, duration = coalition$duration, censor=coalition$ciep12,
type="line", plottimes=FALSE, plotcensor=FALSE,
main="Survival", xlab="Time", ylab="Survival")

## End(Not run)
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11.6 rocplot: Receiver Operator Characteristic Plots

Description

The rocplot command generates a receiver operator characteristic plot to compare the
in-sample (default) or out-of-sample fit for two logit or probit regressions.

Usage

rocplot(y1, y2, fitted1, fitted2, cutoff = seq(from=0, to=1, length=100),

lty1 = "solid", lty2 = "dashed", lwd1 = par("lwd"), lwd2 = par("lwd"),

col1 = par("col"), col2 = par("col"), main, xlab, ylab,

plot = TRUE, ...)

Arguments

y1 Response variable for the first model.

y2 Response variable for the second model.

fitted1 Fitted values for the first model. These values may represent either the
in-sample or out-of-sample fitted values.

fitted2 Fitted values for the second model.

cutoff A vector of cut-off values between 0 and 1, at which to evaluate the
proportion of 0s and 1s correctly predicted by the first and second model.
By default, this is 100 increments between 0 and 1, inclusive.

lty1, lty2 The line type for the first model (lty1) and the second model (lty2),
defaulting to solid and dashed, respectively.

lwd1, lwd2 The width of the line for the first model (lwd1) and the second model
(lwd2), defaulting to 1 for both.

col1, col2 The colors of the line for the first model (col1) and the second model
(col2), defaulting to black for both.

main a title for the plot. Defaults to ROC Curve.

xlab a label for the x-axis. Defaults to Proportion of 1’s Correctly Predicted.

ylab a label for the y-axis. Defaults to Proportion of 0’s Correctly Predicted.

plot defaults to TRUE, which generates a plot to the selected device. If FALSE,
returns a list of items (see below).

... Additional parameters passed to plot, including xlab, ylab, and main.
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Value

If plot = TRUE, rocplot generates an ROC plot for two logit or probit models. If plot
= FALSE, rocplot returns a list with the following elements:

roc1 a matrix containing a vector of x-coordinates and y-coordinates corre-
sponding to the number of ones and zeros correctly predicted for the first
model.

roc2 a matrix containing a vector of x-coordinates and y-coordinates corre-
sponding to the number of ones and zeros correctly predicted for the
second model.

area1 the area under the first ROC curve, calculated using Reimann sums.

area2 the area under the second ROC curve, calculated using Reimann sums.

Author(s)

Kosuke Imai <〈kimai@princeton.edu〉>; Gary King <〈king@harvard.edu〉>; Olivia Lau
<〈olau@fas.harvard.edu〉>

See Also

The full Zelig manual (available at http://gking.harvard.edu/zelig), plot, lines.

Examples

data(turnout)
z.out1 <- zelig(vote ~ race + educate + age, model = "logit",
data = turnout)

z.out2 <- zelig(vote ~ race + educate, model = "logit",
data = turnout)

rocplot(z.out1$y, z.out2$y, fitted(z.out1), fitted(z.out2))
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11.7 ternaryplot: Ternary diagram

Description

Visualizes compositional, 3-dimensional data in an equilateral triangle (from the vcd li-
brary, Version 0.1-3.3, Date 2004-04-21), using plot graphics. Differs from implementation
in vcd (0.9-7), which uses grid graphics.

Usage

ternaryplot(x, scale = 1, dimnames = NULL, dimnames.position = c("corner","edge","none"),

dimnames.color = "black", id = NULL, id.color = "black", coordinates = FALSE,

grid = TRUE, grid.color = "gray", labels = c("inside", "outside", "none"),

labels.color = "darkgray", border = "black", bg = "white", pch = 19, cex = 1,

prop.size = FALSE, col = "red", main = "ternary plot", ...)

Arguments

x a matrix with three columns.

scale row sums scale to be used.

dimnames dimension labels (defaults to the column names of x).

dimnames.position, dimnames.color

position and color of dimension labels.

id optional labels to be plotted below the plot symbols. coordinates and
id are mutual exclusive.

id.color color of these labels.

coordinates if TRUE, the coordinates of the points are plotted below them. coordinates
and id are mutual exclusive.

grid if TRUE, a grid is plotted. May optionally be a string indicating the line
type (default: "dotted").

grid.color grid color.

labels, labels.color

position and color of the grid labels.

border color of the triangle border.

bg triangle background.

pch plotting character. Defaults to filled dots.

cex a numerical value giving the amount by which plotting text and symbols
should be scaled relative to the default. Ignored for the symbol size if
prop.size is not FALSE.
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prop.size if TRUE, the symbol size is plotted proportional to the row sum of the
three variables, i.e. represents the weight of the observation.

col plotting color.

main main title.

... additional graphics parameters (see par)

Details

A points’ coordinates are found by computing the gravity center of mass points using the
data entries as weights. Thus, the coordinates of a point P(a,b,c), a+ b+ c = 1, are: P(b
+ c/2, c * sqrt(3)/2).

Author(s)

David Meyer
〈david.meyer@ci.tuwien.ac.at〉

References

M. Friendly (2000), Visualizing Categorical Data. SAS Institute, Cary, NC.

See Also

ternarypoints

Examples

data(mexico)
if (require(VGAM)) {
z.out <- zelig(as.factor(vote88) ~ pristr + othcok + othsocok,

model = "mlogit", data = mexico)
x.out <- setx(z.out)
s.out <- sim(z.out, x = x.out)

ternaryplot(s.out$qi$ev, pch = ".", col = "blue",
main = "1988 Mexican Presidential Election")

}
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11.8 ternarypoints: Adding Points to Ternary Dia-

grams

Description

Use ternarypoints to add points to a ternary diagram generated using the ternaryplot
function in the vcd library. Use ternary diagrams to plot expected values for multinomial
choice models with three categories in the dependent variable.

Usage

ternarypoints(object, pch = 19, col = "blue", ...)

Arguments

object The input object must be a matrix with three columns.

pch The selected type of point. By default, pch = 19, solid disks.

col The color of the points. By default, col = "blue".

... Additional parameters passed to points.

Value

The ternarypoints command adds points to a previously existing ternary diagram. Use
ternaryplot in the vcd library to generate the main ternary diagram.

Author(s)

Kosuke Imai <〈kimai@princeton.edu〉>; Gary King <〈king@harvard.edu〉>; Olivia Lau
<〈olau@fas.harvard.edu〉>

See Also

The full Zelig manual at http://gking.harvard.edu/zelig, points, and ternaryplot.
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Chapter 12

Models Zelig Can Run

This section describes the mathematical components of the models supported by Zelig, us-
ing whenever possible the classification and notation of King (1989). Most models have a
stochastic component (probability density given certain parameters) and a systematic com-
ponent (deterministic functional form that specifies how one or more of the parameters varies
over the observed values yi as a function of the explanatory variables xi).

Let Yi be a random outcome variable, realized as i = 1, . . . , n observations yi. For
the probability density f(·) with systematic feature θi varying over i and a scalar ancillary
parameter α (constant over i), the stochastic component is given by

Yi ∼ f(yi | θi, α).

For a functional form g(·), k explanatory variables Xi, and effect parameters β, the
systematic component is:

θi = g(xi, β).

Using the definitions of King, Tomz, and Wittenberg, 2000, Zelig generates at least two
quantities of interest:

� The predicted value is a random draw from the stochastic component given random
draws of β and α from their sampling (or posterior) distribution.

� The expected value is the mean of the stochastic component given random draws of β
and α from their sampling (or posterior) distributions. For computational efficiency,
Zelig deterministically calculates the expected values from the simulated parameters
whenever possible.

Both the predicted values and expected values produced by Zelig can be displayed as
histograms or density estimates (to summarize the full sampling or posterior density), or
summarized with confidence intervals (by sorting the simulations and taking the 5th and
95th percentile values for a 90% confidence interval for example), standard errors (by taking
the standard deviation of the simulations), or point estimates (by averaging the simulations).
The point estimate of predicted and expected values are the same only in linear models. In
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almost all situations, simulations from predicted values have more variance than expected
values. As the number of simulations increases the distribution of the expected values tends
toward a constant; the distribution of the predicted values does not collapse as the number
of simulations increases.
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12.1 aov: Analysis of Variance for Continuous Depen-

dent Variables

Model “aov”uses least squares regression to estimate the residual sum of squares and degrees
of freedom for each explanatory variable around the best linear predictor for the specified
dependent variables. Model “aov” is particularly useful for the analysis of randomized ex-
periments with more than one strata or group (e.g., balanced incomplete block design). For
the model with only one strata, “aov” reduces to “ls”.

Syntax

> z.out <- zelig(Y ~ X1 + X2 + Error(Z), model = "aov", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where the Error() term is optional and takes strata formula.

Examples

1. Basic Example of aov.

Attach sample data and set orthogonal contrasts:

> data(npk, package = "MASS")

> op <- options(contrasts = c("contr.helmert", "contr.poly"))

Estimate the model (Venables and Ripley 2002, p.165):

> z.out1 <- zelig(yield ~ block + N * P + K, model = "aov", data = npk)

Summarize the fitted model:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values

> x <- setx(z.out1)

Simulate model at values explanatory variables as in x

> s.out1 <- sim(z.out1, x = x)

> summary(s.out1)

> plot(s.out1)
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2. Example with Error() term allowing for more than one source of random variation in
an experiment (multistratum model).

Estimate the model:

> z.out2 <- zelig(yield ~ N * P * K + Error(block), model = "aov",

+ data = npk)

Summarize regression coefficients:

> summary(z.out2)

Set explanatory variables to their default (mean/mode) values

> x <- setx(z.out2)

Simulate model at values explanatory variables as in x

> s.out2 <- sim(z.out2, x = x)

> summary(s.out2)

> plot(s.out2)
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3. Example with Error() term (multistratum model) and first differences.

Reset to previous contrasts

> options(op)

Estimate model (Venables and Ripley 2002, p.283):

> z.out3 <- zelig(Y ~ N * V + Error(B/V), model = "aov", data = oats)

Summarize regression coefficients:

> summary(z.out3)

Set explanatory variables using mode

> x.out <- setx(z.out3, N = "0.0cwt", V = "Golden.rain")

> x.out1 <- setx(z.out3, N = "0.0cwt", V = "Victory")

Simulate model at values explanatory variables as in x

> s.out3 <- sim(z.out3, x = x.out, x1 = x.out1)

> summary(s.out3)
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> plot(s.out3)
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Model

� The stochastic component is described by a normal density with mean µi and the
common variance σ2

Yi ∼ f(yi | µi, σ
2).

� The systematic component models the conditional mean as

µi = xiβ

where xi is the vector of covariates, and β is the vector of coefficients.

The least squares estimator is the best linear predictor of a dependent variable given
xi, and minimizes the sum of squared residuals,

∑n
i=1(Yi − xiβ)2. The output of aov

model is the sum of squared residuals. Note that aov is the same model as ls but the
output values of function call zelig are different. You may check that name(z.out)

returns the same arguments for the two models.

Quantities of Interest

� The expected value (qi$ev) is the mean of simulations from the stochastic component,

E(Y ) = xiβ,

given a draw of β from its sampling distribution.
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� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "aov", data), then you may examine
the available information in z.out by using names(z.out), see the coefficients by us-
ing z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: fitted values.

– df.residual: the residual degrees of freedom.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coefficients: the residuals sum of squares estimated with their associated de-
gree of freedom, their mean squares, F -values, and F -statistics for all explanatory
variables.

– residuals: the sum of square, mean, degree of freedom, F -values, and F -statistics
for the vector of residuals or standard errors that check the adequecy of the fit
for the dependent variable versus the true values or data points.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

125



– qi$fd: the simulated first differences (or differences in expected values) for the
specified values of x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the aov Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”aov: Fit an Analysis of Vari-
ance Model” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The analysis of variance model is part of the stats package by William N. Venables and
Brian D. Ripley (Venables and Ripley 2002). In addition, advanced users may wish to refer
to help(aov) and help(lm).
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12.2 ARIMA: ARIMA Models for Time Series Data

Use auto-regressive, integrated, moving-average (ARIMA) models for time series data. A
time series is a set of observations ordered according to the time they were observed. Because
the value observed at time t may depend on values observed at previous time points, time
series data may violate independence assumptions. An ARIMA(p, d, q) model can account
for temporal dependence in several ways. First, the time series is differenced to render it
stationary, by taking d differences. Second, the time dependence of the stationary process
is modeled by including p auto-regressive and q moving-average terms, in addition to any
time-varying covariates. For a cyclical time series, these steps can be repeated according
to the period of the cycle, whether quarterly or monthly or another time interval. ARIMA
models are extremely flexible for continuous data. Common formulations include, ARIMA(0,
0, 0) for least squares regression (see Section 12.32), ARIMA(1, 0, 0), for an AR1 model, and
ARIMA(0, 0, 1) for an MA1 model. For a more comprehensive review of ARIMA models,
see Enders (2004).

Syntax

> z.out <- zelig(Diff(Y, d, ds=NULL, per=NULL) ~ lag.y(p, ps=NULL)

+ lag.eps(q, qs=NULL) + X1 + X2,

model="arima", data=mydata, ...)

> x.out <- setx(z.out, X1 = list(time, value), cond = FALSE)

> s.out <- sim(z.out, x=x.out, x1=NULL)

Inputs

In addition to independent variables, zelig() accepts the following arguments to specify
the ARIMA model:

� Diff(Y, d, ds, per) for a dependent variable Y sets the number of non-seasonal
differences (d), the number of seasonal differences (ds), and the period of the season
(per).

� lag.y(p, ps) sets the number of lagged observations of the dependent variable for
non-seasonal (p) and seasonal (ps) components.

� lag.eps(q, qs) sets the number of lagged innovations, or differences between the
observed value of the time series and the expected value of the time series for non-
seasonal (q) and seasonal (qs) components.

In addition the user can control the estimation of the time series with the following terms:

� . . .: Additional inputs. See help(arima) in the stats library for further information.
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Stationarity

A stationary time series has finite variance, correlations between observations that are not
time-dependent, and a constant expected value for all components of the time series (Brock-
well and Davis 1991, p. 12). Users should ensure that the time series being analyzed is
stationary before specifying a model. The following commands provide diagnostics to deter-
mine if a time series Y is stationary.

� pp.test(Y): Tests the null hypothesis that the time series is non-stationary.

� kpss.test(Y): Tests the null hypothesis that the time series model is stationary.

The following commands provide graphical means of diagnosing whether a given time series
is stationary.

� ts.plot(Y): Plots the observed time series.

� acf(Y): Provides the sample auto-correlation function (correlogram) for the time series.

� pacf(Y): Provides the sample partial auto-correlation function (PACF) for the time
series.

These latter two plots are also useful in determining the p autoregressive terms and the q
lagged error terms. See Enders (2004) for a complete description of how to utilize ACF and
PACF plots to determine the order of an ARIMA model.

Examples

1. No covariates

Estimate the ARIMA model, and summarize the results.

> data(approval)

> z.out1 <- zelig(Diff(approve, 1) ~ lag.eps(2) + lag.y(2), data = approval,

+ model = "arima")

> summary(z.out1)

Set the number of time periods (ahead) for the prediction to run. for which you would
like the prediction to run:

> x.out1 <- setx(z.out1, pred.ahead = 10)

Simulate the predicted quantities of interest:

> s.out1 <- sim(z.out1, x = x.out1)
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Summarize and plot the results:

> summary(s.out1)

> plot(s.out1, lty.set = 2)
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2. Calculating a treatment effect

Estimate an ARIMA model with exogenous regressors, in addition to lagged errors and
lagged values of the dependent variable.

> z.out2 <- zelig(Diff(approve, 1) ~ iraq.war + sept.oct.2001 +

+ avg.price + lag.eps(1) + lag.y(2), data = approval, model = "arima")

To calculate a treatment effect, provide one counterfactual value for one time period
for one of the exogenous regressors (this is the counterfactual treatment).
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> x.out2 <- setx(z.out2, sept.oct.2001 = list(time = 45, value = 0),

+ cond = T)

Simulate the quantities of interes

> s.out2 <- sim(z.out2, x = x.out2)

Summarizing and plotting the quantities of interest.

> summary(s.out2)

> plot(s.out2)
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3. Calculating first differences

Continuing the example from above, calculate first differences by selecting several coun-
terfactual values for one of the exogenous regressors.
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> x.out3 <- setx(z.out2, sept.oct.2001 = list(time = 45:50, value = 0))

> x1.out3 <- setx(z.out2, sept.oct.2001 = list(time = 45:50, value = 1))

Simulating the quantities of interest

> s.out3 <- sim(z.out2, x = x.out3, x1 = x1.out3)

Summarizing and plotting the quantities of interest. Choosing pred.se = TRUE only
displays the uncertainty resulting from parameter estimation.

> summary(s.out3)

> plot(s.out3, pred.se = TRUE)
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Model

Suppose we observe a time series Y , with observations Yi where i denotes the time at which
the observation was recorded. The first step in the ARIMA procedure is to ensure that this
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series is stationary. If initial diagnostics indicate non-stationarity, then we take additional
differences until the diagnostics indicate stationarity. Formally, define the difference operator,
∇d, as follows. When d = 1, ∇1Y = Yi − Yi−1, for all observations in the series. When
d = 2, ∇2Y = (Yi − Yi−1) − (Yi−1 − Yi−2). This is analogous to a polynomial expansion,
Yi − 2Yi−1 + Yi−2. Higher orders of differencing (d > 2) following the same function. Let Y ∗

represent the stationary time series derived from the initial time series by differencing Y d
times. In the second step, lagged values of Y ∗ and errors µ− Y ∗

i are used to model the time
series. ARIMA utilizes a state space representation of the ARIMA model to assemble the
likelihood and then utilizes maximum likelihood to estimate the parameters of the model.
See Brockwell and Davis (1991) Chapter 12 for further details.

� A stationary time series Y ∗
i that has been differenced d times has stochastic component :

Y ∗
i ∼ Normal(µi, σ

2),

where µi and σ2 are the mean and variance of the Normal distribution, respectively.

� The systematic component, µi is modeled as

µi = xiβ + α1Y
∗
i−1 + . . .+ αpY

∗
i−p + γ1εi−1 + . . .+ γqεi−q

where xi are the explanatory variables with associated parameter vector β; Y ∗ the
lag-p observations from the stationary time series with associated parameter vector α;
and εi the lagged errors or innovations of order q, with associated parameter vector γ.

Quantities of Interest

� The expected value (qi$ev) is the mean of simulations from the stochastic component,

E(Yi) = µi = xiβ + α1Y
∗
i−1 + . . .+ αpY

∗
i−p + γ1εi−1 + . . .+ γqεi−q

given draws of β, α, and γ from their estimated distribution.

� The first difference (qi$fd) is:

FDi = E(Y |x1i)− E(Y |xi)

� The treatment effect (qi$t.eff), obtained with setx(..., cond = TRUE), represents
the difference between the observed time series and the expected value of a time series
with counterfactual values of the external regressors. Formally,

t.effi = Yi − E[Yi|xi]

Zelig will not estimate both first differences and treatment effects.
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Output Values

The output of each Zelig command contains useful information which the user may view. For
example, if the user runs z.out <- zelig(Diff(Y,1) + lag.y(1) + lag.eps(1) + X1,

model = "arima", data) then the user may examine the available information in z.out

by using names(z.out), see the coefficients by using z.out$coef and a default summary of
information through summary(z.out). tsdiag(z.out) returns a plot of the residuals, the
ACF of the residuals, and a plot displaying the p-values for the Ljung-Box statistic. Other
elements, available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coef: parameter estimates for the explanatory variables, lagged observations of
the time series, and lagged innovations.

– sigma2: maximum likelihood estimate of the variance of the stationary time series.

– var.coef: variance-covariance matrix for the parameters.

– loglik: maximized log-likelihood.

– aic: Akaike Information Criterion (AIC) for the maximized log-likelihood.

– residuals: Residuals from the fitted model.

– arma: A vector with seven elements corresponding to the AR and MA, the seasonal
AR and MA, the period of the seasonal component, and the number of non-
seasonal and seasonal differences of the dependent variable.

– data: the name of the input data frame.

� From the sim() output object s.out you may extract quantities of interest arranged
as matrices, with the rows indicating the number of the simulations, and the columns
representing the simulated value of the dependent variable for the counterfactual value
at that time period. summary(s.out) provides a summary of the simulated values,
while plot(s.out) provides a graphical representation of the simulations. Available
quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$fd : the simulated first difference for the values that are specified in x and x1.

– qi$t.eff: the simulated treatment effect, difference between the observed y and
the expected values given the counterfactual values specified in x.

How to Cite

To cite the arima Zelig model:

Justin Grimmer. 2007. ”arima: Arima models for Time Series Data” in Ko-
suke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s Statistical Soft-
ware,”http://gking.harvard.edu/zelig
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To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The ARIMA function is part of the stats package (Venables and Ripley 2002) For an ac-
cessible introduction to identifying the order of an ARIMA model consult Enders (2004) In
addition, advanced users may wish to become more familiar with the state-space represen-
tation of an ARIMA process (Brockwell and Davis 1991) Additional options for ARIMA
models may be found using help(arima).
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12.3 blogit: Bivariate Logistic Regression for Two Di-

chotomous Dependent Variables

Use the bivariate logistic regression model if you have two binary dependent variables (Y1, Y2),
and wish to model them jointly as a function of some explanatory variables. Each pair of
dependent variables (Yi1, Yi2) has four potential outcomes, (Yi1 = 1, Yi2 = 1), (Yi1 = 1, Yi2 =
0), (Yi1 = 0, Yi2 = 1), and (Yi1 = 0, Yi2 = 0). The joint probability for each of these
four outcomes is modeled with three systematic components: the marginal Pr(Yi1 = 1) and
Pr(Yi2 = 1), and the odds ratio ψ, which describes the dependence of one marginal on
the other. Each of these systematic components may be modeled as functions of (possibly
different) sets of explanatory variables.

Syntax

> z.out <- zelig(list(mu1 = Y1 ~ X1 + X2 ,

mu2 = Y2 ~ X1 + X3),

model = "blogit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Input Values

In every bivariate logit specification, there are three equations which correspond to each
dependent variable (Y1, Y2), and ψ, the odds ratio. You should provide a list of formulas for
each equation or, you may use cbind() if the right hand side is the same for both equations

> formulae <- list(cbind(Y1, Y2) ~ X1 + X2)

which means that all the explanatory variables in equations 1 and 2 (corresponding to Y1 and
Y2) are included, but only an intercept is estimated (all explanatory variables are omitted)
for equation 3 (ψ).

You may use the function tag() to constrain variables across equations:

> formulae <- list(mu1 = y1 ~ x1 + tag(x3, "x3"), mu2 = y2 ~ x2 +

+ tag(x3, "x3"))

where tag() is a special function that constrains variables to have the same effect across
equations. Thus, the coefficient for x3 in equation mu1 is constrained to be equal to the
coefficient for x3 in equation mu2.

Examples

1. Basic Example

Load the data and estimate the model:
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> data(sanction)

> z.out1 <- zelig(cbind(import, export) ~ coop + cost + target,

+ model = "blogit", data = sanction)

By default, zelig() estimates two effect parameters for each explanatory variable in
addition to the odds ratio parameter; this formulation is parametrically independent
(estimating unconstrained effects for each explanatory variable), but stochastically de-
pendent because the models share an odds ratio.

Generate baseline values for the explanatory variables (with cost set to 1, net gain
to sender) and alternative values (with cost set to 4, major loss to sender):

> x.low <- setx(z.out1, cost = 1)

> x.high <- setx(z.out1, cost = 4)

Simulate fitted values and first differences:

> s.out1 <- sim(z.out1, x = x.low, x1 = x.high)

> summary(s.out1)

> plot(s.out1)
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Predicted Probabilities: Pr(Y1=k,Y2=l|X)
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2. Joint Estimation of a Model with Different Sets of Explanatory Variables

Using sample data sanction, estimate the statistical model, with import a function
of coop in the first equation and export a function of cost and target in the second
equation:

> z.out2 <- zelig(list(import ~ coop, export ~ cost + target),

+ model = "blogit", data = sanction)

> summary(z.out2)

Set the explanatory variables to their means:

> x.out2 <- setx(z.out2)

Simulate draws from the posterior distribution:

> s.out2 <- sim(z.out2, x = x.out2)

> summary(s.out2)

137



> plot(s.out2)

Predicted Probabilities: Pr(Y1=k,Y2=l|X)
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3. Joint Estimation of a Parametrically and Stochastically Dependent Model

Using the sample data sanction The bivariate model is parametrically dependent if Y1

and Y2 share some or all explanatory variables, and the effects of the shared explanatory
variables are jointly estimated. For example,

> z.out3 <- zelig(list(import ~ tag(coop, "coop") + tag(cost, "cost") +

+ tag(target, "target"), export ~ tag(coop, "coop") + tag(cost,

+ "cost") + tag(target, "target")), model = "blogit", data = sanction)

> summary(z.out3)

Note that this model only returns one parameter estimate for each of coop, cost, and
target. Contrast this to Example 1 which returns two parameter estimates for each
of the explanatory variables.

138



Set values for the explanatory variables:

> x.out3 <- setx(z.out3, cost = 1:4)

Draw simulated expected values:

> s.out3 <- sim(z.out3, x = x.out3)

> summary(s.out3)

Model

For each observation, define two binary dependent variables, Y1 and Y2, each of which take
the value of either 0 or 1 (in the following, we suppress the observation index). We model
the joint outcome (Y1, Y2) using a marginal probability for each dependent variable, and
the odds ratio, which parameterizes the relationship between the two dependent variables.
Define Yrs such that it is equal to 1 when Y1 = r and Y2 = s and is 0 otherwise, where r and
s take a value of either 0 or 1. Then, the model is defined as follows,

� The stochastic component is

Y11 ∼ Bernoulli(y11 | π11)

Y10 ∼ Bernoulli(y10 | π10)

Y01 ∼ Bernoulli(y01 | π01)

where πrs = Pr(Y1 = r, Y2 = s) is the joint probability, and π00 = 1− π11 − π10 − π01.

� The systematic components model the marginal probabilities, πj = Pr(Yj = 1), as well
as the odds ratio. The odds ratio is defined as ψ = π00π01/π10π11 and describes the
relationship between the two outcomes. Thus, for each observation we have

πj =
1

1 + exp(−xjβj)
for j = 1, 2,

ψ = exp(x3β3).

Quantities of Interest

� The expected values (qi$ev) for the bivariate logit model are the predicted joint prob-
abilities. Simulations of β1, β2, and β3 (drawn from their sampling distributions) are
substituted into the systematic components (π1, π2, ψ) to find simulations of the pre-
dicted joint probabilities:

π11 =

{
1
2
(ψ − 1)−1 − a−

√
a2 + b for ψ 6= 1

π1π2 for ψ = 1
,

π10 = π1 − π11,

π01 = π2 − π11,

π00 = 1− π10 − π01 − π11,
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where a = 1 + (π1 + π2)(ψ − 1), b = −4ψ(ψ − 1)π1π2, and the joint probabilities for
each observation must sum to one. For n simulations, the expected values form an
n× 4 matrix for each observation in x.

� The predicted values (qi$pr) are draws from the multinomial distribution given the
expected joint probabilities.

� The first differences (qi$fd) for each of the predicted joint probabilities are given by

FDrs = Pr(Y1 = r, Y2 = s | x1)− Pr(Y1 = r, Y2 = s | x).

� The risk ratio (qi$rr) for each of the predicted joint probabilities are given by

RRrs =
Pr(Y1 = r, Y2 = s | x1)

Pr(Y1 = r, Y2 = s | x)

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yij(ti = 1)− E[Yij(ti = 0)]} for j = 1, 2,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yij(ti = 0)], the counterfactual expected value of Yij for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yij(ti = 1)− ̂Yij(ti = 0)

}
for j = 1, 2,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yij(ti = 0), the counterfactual predicted value of Yij for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "blogit", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and obtain a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.
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� From the zelig() output object z.out, you may extract:

– coefficients: the named vector of coefficients.

– fitted.values: an n× 4 matrix of the in-sample fitted values.

– predictors: an n× 3 matrix of the linear predictors xjβj.

– residuals: an n× 3 matrix of the residuals.

– df.residual: the residual degrees of freedom.

– df.total: the total degrees of freedom.

– rss: the residual sum of squares.

– y: an n× 2 matrix of the dependent variables.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coef3: a table of the coefficients with their associated standard errors and t-
statistics.

– cov.unscaled: the variance-covariance matrix.

– pearson.resid: an n× 3 matrix of the Pearson residuals.

� From the sim() output object s.out, you may extract quantities of interest arranged
as arrays indexed by simulation × quantity × x-observation (for more than one x-
observation; otherwise the quantities are matrices). Available quantities are:

– qi$ev: the simulated expected joint probabilities (or expected values) for the
specified values of x.

– qi$pr: the simulated predicted outcomes drawn from a distribution defined by
the expected joint probabilities.

– qi$fd: the simulated first difference in the expected joint probabilities for the
values specified in x and x1.

– qi$rr: the simulated risk ratio in the predicted probabilities for given x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.
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How to Cite

To cite the blogit Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”blogit: Bivariate Logistic Regres-
sion for Dichotomous Dependent Variables” in Kosuke Imai, Gary King, and
Olivia Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.
edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The bivariate logit function is part of the VGAM package by Thomas Yee (Yee and Hastie
2003). In addition, advanced users may wish to refer to help(vglm) in the VGAM library.
Additional documentation is available at http://www.stat.auckland.ac.nz/˜ yee.Sample data
are from Martin (1992)
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12.4 bprobit: Bivariate Logistic Regression for Two

Dichotomous Dependent Variables

Use the bivariate probit regression model if you have two binaryrun dependent variables
(Y1, Y2), and wish to model them jointly as a function of some explanatory variables. Each
pair of dependent variables (Yi1, Yi2) has four potential outcomes, (Yi1 = 1, Yi2 = 1), (Yi1 =
1, Yi2 = 0), (Yi1 = 0, Yi2 = 1), and (Yi1 = 0, Yi2 = 0). The joint probability for each of
these four outcomes is modeled with three systematic components: the marginal Pr(Yi1 = 1)
and Pr(Yi2 = 1), and the correlation parameter ρ for the two marginal distributions. Each
of these systematic components may be modeled as functions of (possibly different) sets of
explanatory variables.

Syntax

> z.out <- zelig(list(mu1 = Y1 ~ X1 + X2,

mu2 = Y2 ~ X1 + X3,

rho = ~ 1),

model = "bprobit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Input Values

In every bivariate probit specification, there are three equations which correspond to each
dependent variable (Y1, Y2), and the correlation parameter ρ. Since the correlation parameter
does not correspond to one of the dependent variables, the model estimates ρ as a constant by
default. Hence, only two formulas (for µ1 and µ2) are required. If the explanatory variables
for µ1 and µ2 are the same and effects are estimated separately for each parameter, you may
use the following short hand:

> fml <- list(cbind(Y1, Y2) ~ X1 + X2)

which has the same meaning as:

> fml <- list(mu1 = Y1 ~ X1 + X2, mu2 = Y2 ~ X1 + X2, rho = ~1)

You may use the function tag() to constrain variables across equations. The tag() function
takes a variable and a label for the effect parameter. Below, the constrained effect of x3 in
both equations is called the age parameter:

> fml <- list(mu1 = y1 ~ x1 + tag(x3, "age"), mu2 = y2 ~ x2 + tag(x3,

+ "age"))

You may also constrain different variables across different equations to have the same effect.
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Examples

1. Basic Example

Load the data and estimate the model:

> data(sanction)

> z.out1 <- zelig(cbind(import, export) ~ coop + cost + target,

+ model = "bprobit", data = sanction)

By default, zelig() estimates two effect parameters for each explanatory variable in
addition to the correlation coefficient; this formulation is parametrically independent
(estimating unconstrained effects for each explanatory variable), but stochastically de-
pendent because the models share a correlation parameter.

Generate baseline values for the explanatory variables (with cost set to 1, net gain
to sender) and alternative values (with cost set to 4, major loss to sender):

> x.low <- setx(z.out1, cost = 1)

> x.high <- setx(z.out1, cost = 4)

Simulate fitted values and first differences:

> s.out1 <- sim(z.out1, x = x.low, x1 = x.high)

> summary(s.out1)

> plot(s.out1)
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Predicted Probabilities: Pr(Y1=k,Y2=l|X)
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2. Joint Estimation of a Model with Different Sets of Explanatory Variables

Using the sample data sanction, estimate the statistical model, with import a function
of coop in the first equation and export a function of cost and target in the second
equation:

> fml2 <- list(mu1 = import ~ coop, mu2 = export ~ cost + target)

> z.out2 <- zelig(fml2, model = "bprobit", data = sanction)

> summary(z.out2)

Set the explanatory variables to their means:

> x.out2 <- setx(z.out2)

Simulate draws from the posterior distribution:
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> s.out2 <- sim(z.out2, x = x.out2)

> summary(s.out2)

> plot(s.out2)

Predicted Probabilities: Pr(Y1=k,Y2=l|X)
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3. Joint Estimation of a Parametrically and Stochastically Dependent Model

Using the sample data sanction. The bivariate model is parametrically dependent
if Y1 and Y2 share some or all explanatory variables, and the effects of the shared
explanatory variables are jointly estimated. For example,

> fml3 <- list(mu1 = import ~ tag(coop, "coop") + tag(cost, "cost") +

+ tag(target, "target"), mu2 = export ~ tag(coop, "coop") +

+ tag(cost, "cost") + tag(target, "target"))

> z.out3 <- zelig(fml3, model = "bprobit", data = sanction)

> summary(z.out3)
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Note that this model only returns one parameter estimate for each of coop, cost, and
target. Contrast this to Example 1 which returns two parameter estimates for each
of the explanatory variables.

Set values for the explanatory variables:

> x.out3 <- setx(z.out3, cost = 1:4)

Draw simulated expected values:

> s.out3 <- sim(z.out3, x = x.out3)

> summary(s.out3)

Model

For each observation, define two binary dependent variables, Y1 and Y2, each of which take
the value of either 0 or 1 (in the following, we suppress the observation index i). We model
the joint outcome (Y1, Y2) using two marginal probabilities for each dependent variable, and
the correlation parameter, which describes how the two dependent variables are related.

� The stochastic component is described by two latent (unobserved) continuous variables
which follow the bivariate Normal distribution:(

Y ∗
1

Y ∗
2

)
∼ N2

{(
µ1

µ2

)
,

(
1 ρ
ρ 1

)}
,

where µj is a mean for Y ∗
j and ρ is a scalar correlation parameter. The following

observation mechanism links the observed dependent variables, Yj, with these latent
variables

Yj =

{
1 if Y ∗

j ≥ 0,
0 otherwise.

� The systemic components for each observation are

µj = xjβj for j = 1, 2,

ρ =
exp(x3β3)− 1

exp(x3β3) + 1
.

Quantities of Interest

For n simulations, expected values form an n× 4 matrix.

� The expected values (qi$ev) for the binomial probit model are the predicted joint
probabilities. Simulations of β1, β2, and β3 (drawn form their sampling distributions)
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are substituted into the systematic components, to find simulations of the predicted
joint probabilities πrs = Pr(Y1 = r, Y2 = s):

π11 = Pr(Y ∗
1 ≥ 0, Y ∗

2 ≥ 0) =

∫ ∞

0

∫ ∞

0

φ2(µ1, µ2, ρ) dY
∗
2 dY

∗
1

π10 = Pr(Y ∗
1 ≥ 0, Y ∗

2 < 0) =

∫ ∞

0

∫ 0

−∞
φ2(µ1, µ2, ρ) dY

∗
2 dY

∗
1

π01 = Pr(Y ∗
1 < 0, Y ∗

2 ≥ 0) =

∫ 0

−∞

∫ ∞

0

φ2(µ1, µ2, ρ) dY
∗
2 dY

∗
1

π11 = Pr(Y ∗
1 < 0, Y ∗

2 < 0) =

∫ 0

−∞

∫ 0

−∞
φ2(µ1, µ2, ρ) dY

∗
2 dY

∗
1

where r and s may take a value of either 0 or 1, φ2 is the bivariate Normal density.

� The predicted values (qi$pr) are draws from the multinomial distribution given the
expected joint probabilities.

� The first difference (qi$fd) in each of the predicted joint probabilities are given by

FDrs = Pr(Y1 = r, Y2 = s | x1)− Pr(Y1 = r, Y2 = s | x).

� The risk ratio (qi$rr) for each of the predicted joint probabilities are given by

RRrs =
Pr(Y1 = r, Y2 = s | x1)

Pr(Y1 = r, Y2 = s | x)
.

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yij(ti = 1)− E[Yij(ti = 0)]} for j = 1, 2,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yij(ti = 0)], the counterfactual expected value of Yij for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yij(ti = 1)− ̂Yij(ti = 0)

}
for j = 1, 2,
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where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yij(ti = 0), the counterfactual predicted value of Yij for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "bprobit", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and obtain a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: the named vector of coefficients.

– fitted.values: an n× 4 matrix of the in-sample fitted values.

– predictors: an n× 3 matrix of the linear predictors xjβj.

– residuals: an n× 3 matrix of the residuals.

– df.residual: the residual degrees of freedom.

– df.total: the total degrees of freedom.

– rss: the residual sum of squares.

– y: an n× 2 matrix of the dependent variables.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coef3: a table of the coefficients with their associated standard errors and t-
statistics.

– cov.unscaled: the variance-covariance matrix.

– pearson.resid: an n× 3 matrix of the Pearson residuals.

� From the sim() output object s.out, you may extract quantities of interest arranged
as arrays indexed by simulation × quantity × x-observation (for more than one x-
observation; otherwise the quantities are matrices). Available quantities are:

– qi$ev: the simulated expected values (joint predicted probabilities) for the spec-
ified values of x.

– qi$pr: the simulated predicted outcomes drawn from a distribution defined by
the joint predicted probabilities.
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– qi$fd: the simulated first difference in the predicted probabilities for the values
specified in x and x1.

– qi$rr: the simulated risk ratio in the predicted probabilities for given x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the bprobit Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”bprobit: Bivariate Probit Re-
gression for Dichotomous Dependent Variables” in Kosuke Imai, Gary King,
and Olivia Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.
edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The bivariate probit function is part of the VGAM package by Thomas Yee (Yee and Hastie
2003). In addition, advanced users may wish to refer to help(vglm) in the VGAM library.
Additional documentation is available at http://www.stat.auckland.ac.nz/˜ yee.Sample data
are from Martin (1992)
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12.5 chopit: Compound Hierarchical Ordered Probit

for Survey Vignettes

The Compound Hierarchical Ordered Probit (chopit) model corrects for “differential item
functioning” or “interpersonal comparability” in ordinal survey responses. Given a self-
assessment question (such as, “How healthy are you? Excellent, good, fair, or poor.”), differ-
ent respondents may interpret the response categories in different ways, such that excellent
health to one individual may be fair health to a hypochondriac. For each ordinal self-
assessment to be corrected, the chopit model requires one or more vignette question (such
as a description of a hypothetical person’s health, followed by the same response categories
as the self-assessment), and a set of associated explanatory variables for the respondent. The
key assumption of the approach is that the thresholds (which determine how respondents
translate their views into the response categories) have the same effect for different questions
asked of the same respondent, but may differ across respondents; the model uses a paramet-
ric specification to predict the thresholds associated with an individual. The self-assessment
and vignette questions may be taken from different surveys, so long as both surveys include
the same explanatory variable questions to predict the thresholds. For ordinal data (without
vignettes), see Section 12.46, Section 12.53, and Section 12.47.

Syntax

> fml <- list(self = Y ~ X1 + X2,

vign = cbind(Z1, Z2, Z3) ~ 1,

tau = ~ X1 + X2)

> z.out <- zelig(fml, data = list(self = data1, vign = data2),

model = "chopit")

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out, x1 = NULL)

Inputs

In this hierarchical model, the formula and data inputs to zelig() are lists with the fol-
lowing structure:

� The formula is a list with three formula objects corresponding to:

– self: Specifies the self-response question (Y) as a function of a set of explanatory
variables.

– vign: Specifies the vignette questions on the left-hand side as a matrix in the
form cbind(Z1, Z2, Z3).

– tau: Specifies explanatory variables that constrain the cut points across both the
vignette and self-response questions. These explanatory variables do not neces-
sarily need to overlap with the set of explanatory variables specified in the self
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formula, but must be observed in both the vign and self data frames, described
below.

� The data argument is a list of two data frames with

– self: A data frame containing the self-response question(s) specified in the self

formula and associated explanatory variables listed in the self and tau formulas.

– vign: A data frame containing the vignette questions specified in the vign formula
and associated explanatory variables listed in the tau formula.

Additional Inputs

In addition to the standard inputs, zelig() takes many additional options for compound
hierarchical ordered probit regression, see help(chopit) and Wand et al. (2007, forthcoming)
for details.

Examples

1. Basic Example

Setting up the formula as a list for the self-response, vignettes, and the cut points
(drawn from both the self-response and vignette data sets).

> formula <- list(self = y ~ sex + age + educ + factor(country),

+ vign = cbind(v1, v2, v3, v4, v5) ~ 1, tau = ~sex + age +

+ educ + factor(country))

Attaching the sample data sets. The free1 data correspond to the self-response data,
and the free2 data correspond to the vignette subset. Note that the variables specified
in the tau formula must be in both data sets.

> data(free1, free2)

> data <- list(self = free1, vign = free2)

Estimating parameter values for the chopit regression:

> z.out <- zelig(formula, data = data, model = "chopit")

Setting values for the explanatory variables to their default values:

> x.out1 <- setx(z.out)

Simulating quantities of interest from the sampling distribution.

> s.out1 <- sim(z.out, x = x.out1)
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> summary(s.out1)

2. Simulating First Differences

Estimate the first difference in expected values between the average age (about 40 years
old) and a 25 year old individual, with the other explanatory variables held at their
default values:

> x.out2 <- setx(z.out, age = 25)

> s.out2 <- sim(z.out, x = x.out1, x1 = x.out2)

> summary(s.out2)

3. Conditional prediction

Conditional prediction generates expected values that are conditional on the observed
self-response.

> x.out3 <- setx(z.out, cond = TRUE)

Since conditional prediction involves numeric integration, the procedure takes approx-
imately one second per observation in x.out3 on 64-bit R.

> s.out3 <- sim(z.out, x = x.out3)

> summary(s.out3)

Model

This model has two sets of response variables, one for the self-assessment and one for the
vignettes. Let Yi be the observed ordinal self-assessment for respondents i = 1, . . . , n, and
Zlj be the ordinal vignette responses for individuals l = 1, . . . , L in the vignette subset for
j = 1, . . . , J vignette questions, such that both {Yi, Zlj} take integer values k = 1, . . . , K
corresponding to the same ordinal assessment response categories.

� The stochastic components are described by unobserved continuous variables, Y ∗
i and

Z∗
lj, which follows normal distributions with mean µi and variance σ2 in the case of Y ∗

i ,
and mean θj and variance σ2

j in the case of each Z∗
lj. Using the default identification

mechanism, the variance σ2 for the self-assessment is fixed to 1. Thus,

Y ∗
i ∼ N(µi, 1)

Z∗
lj ∼ N(θj, σ

2
j )

such that each vignette response j has a scalar mean θj and variance σ2
j that does not

vary over observations l. In cases where more than one self-response was administered
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to the same subject, an additional random effect may be included in the distribution
of the latent Y ∗

i in the form

Y ∗
i ∼ N(µi, 1 + ω2)

where the variance term is obtained via the proof described in Appendix A of King
et al. (2004).

The observation mechanisms that divide the continuous {Y ∗
i , Z

∗
lj} into the discrete

{Yi, Zlj} are

Yi = k if τ k−1
i ≤ Y ∗

i ≤ τ k
i for k = 1, . . . , K

Zlj = k if τ k−1
l ≤ Z∗

lj ≤ τ k
l for k = 1, . . . , K

where the threshold parameters τ vary over individuals {i, l}, but are subject to the
following constraints within each individual: τ p < τ q for all p < q and τ0 = −∞ and
τK = ∞.

� There are three systematic components in the model.

– For the self-assessment component, let

µi = xiβ

where xi is the vector of q explanatory variables for observation i, and β is the
associated vector of coefficients.

– In addition, the threshold parameters also vary over individuals in the self-assessment
component as follows

τ 1
i = viγ

1

τ k
i = τ k−1

i + exp(viγ
k) for k = 2, . . . , K

where vi is the vector of p explanatory variables for observation i, and γk for
k = 1, . . . , K are the vectors of coefficients associated with each categorical re-
sponse. Thus, the threshold parameters vary over individuals since vi vary, and
over response categories since the γk vary over the threshold parameters.

– Similarly, the threshold parameters vary over individuals in the vignette compo-
nent as follows

τ 1
l = vlγ

1

τ k
l = τ k−1

l + exp(vlγ
k) for k = 2, . . . , K

where vl is a vector of p explanatory variables for observation l in the vignette
subset, and γk are restricted to be the same γk used to parameterize the threshold
parameters for the self-assessment component.
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As King et al. (2004) note, the interpersonal comparability of responses (or response
consistency) is achieved by constraining γk to be the same in both the self-assessment
and vignette components of the model. Note that the variables included in vi and vl

are the same, but the observed values of those variables differ across the vignette and
self-response samples.

Quantities of Interest

� The expected value (qi$ev) for the chopit model is the expected value of the posterior
density for the systematic component µi,

EV = E(µi | xi) = xiβ

given draws of β from its sampling distribution.

� The first difference is the difference in the expected value of the posterior density for
the systematic component µi given x1 and x0:

FD = E(µi | x1)− E(µi | x0).

� In conditional prediction models, the conditional expected values (qi$cev) are the
expected value of the distribution of µi conditional on the observed self-assessment
response Yi, where

P (µi | τi, β, xi, Yi) =
K∏

k=1

[Φ(τ k
i − µi)− Φ(τ k−1

i − µi)]×N(xiβ, xiV̂ (β̂)x′i + ω̂2)

given the simulations of the threshold parameters calculated above, draws of β from
its sampling distribution, and the estimated variance-covariance matrix for β̂.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(..., model = "chopit"), then you may examine
the available information in z.out by using names(z.out), see the estimated parameters by
using z.out$par, and a default summary of information through summary(z.out). Other
elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– par: the maximum likelihood parameter estimates for γ̂k for k = 1, . . . , K re-
sponse categories, log(ω̂) (if estimated), log(σ̂) (if estimated), log(σ̂j) for j =

1, . . . , J vignette questions, θ̂j, and β̂.

– chopit.hessian: the estimated Hessian matrix, with rows and columns corre-
sponding to the elements in par.
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– value: the value of the log-likelihood at its maximum

– counts: the number of function and gradient calls to reach the maximum.

– formula: the formula for self, vign, and tau selected by the user.

– call: the call to zelig().

– ...: additional outputs described in help(chopit).

� Typing summary(z.out) provides a useful summary of the output from zelig(), but
no items can be extracted.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first difference in the expected values for the values specified
in x and x1.

– qi$cev: the simulated conditional expected value given x.

How to Cite

To cite the chopit Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”chopit: Compound Hier-
archical Ordinal Probit Regression for Survey Vignettes” in Kosuke Imai,
Gary King, and Olivia Lau, ”Zelig: Everyone’s Statistical Software,”http:
//gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The chopit model is part of the anchors package by Jonathan Wand, Gary King, and Olivia
Lau (Wand et al. 2007, forthcoming). Advanced users may wish to refer to help(chopit),
as well as King et al. (2004) and King and Wand (2007).
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12.6 cloglog.net: Network Complementary Log Log

Regression for Dichotomous Proximity Matrix De-

pendent Variables

Use network complementary log log regression analysis for a dependent variable that is a
binary valued proximity matrix (a.k.a. sociomatricies, adjacency matrices, or matrix repre-
sentations of directed graphs).

Syntax

> z.out <- zelig(y ~ x1 + x2, model = "cloglog.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Examples

1. Basic Example

Load the sample data (see ?friendship for details on the structure of the network
dataframe):

> data(friendship)

Estimate model:

> z.out <- zelig(friends ~ advice + prestige + perpower, model = "cloglog.net",

+ data = friendship)

> summary(z.out)

Setting values for the explanatory variables to their default values:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution.

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low personal power (25th per-
centile) and high personal power (75th percentile) while all the other variables are held
at their default values.
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> x.high <- setx(z.out, perpower = quantile(friendship$perpower,

+ prob = 0.75))

> x.low <- setx(z.out, perpower = quantile(friendship$perpower,

+ prob = 0.25))

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)
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Model

The cloglog.net model performs a complementary log log regression of the proximity matrix
Y, a m×m matrix representing network ties, on a set of proximity matrices X. This network
regression model is directly analogous to standard complementary log log regression element-
wise on the appropriately vectorized matrices. Proximity matrices are vectorized by creating
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Y , a m2× 1 vector to represent the proximity matrix. The vectorization which produces the
Y vector from the Y matrix is performed by simple row-concatenation of Y. For example,
if Y is a 15 × 15 matrix, the Y1,1 element is the first element of Y , and the Y2,1 element
is the second element of Y and so on. Once the input matrices are vectorized, standard
complementary log log regression is performed.

Let Yi be the binary dependent variable, produced by vectorizing a binary proximity
matrix, for observation i which takes the value of either 0 or 1.

� The stochastic component is given by

Yi ∼ Bernoulli(πi)

where πi = Pr(Yi = 1).

� The systematic component is given by:

πi = 1− exp[exp(−xiβ)]

where xi the vector of k explanatory variables for observation i and β is the vector of
coefficients.

Quantities of Interest

The quantities of interest for the network complementary log log regression are the same as
those for the standard complementary log log regression.

� The expected values (qi$ev) for the cloglog.nett model are simulations of the pre-
dicted probability of a success:

E(Y ) = πi = 1− exp[exp(−xiβ)],

given draws of β from its sampling distribution.

� The predicted values (qi$pr) are draws from the Binomial distribution with mean
equal to the simulated expected value πi.

� The first difference (qi$fd) for the network complementary log log model is defined as

FD = Pr(Y = 1|x1)− Pr(Y = 1|x)

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, you run z.out <- zelig(y ~ x, model = "cloglog.net", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by us-
ing z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.
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� From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaikeś Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– bic: the Bayesian Information Criterion (minus twice the maximized log-likelihood
plus the number of coefficients times log n).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE

� From summary(z.out)(as well as from zelig()), you may extract:

– mod.coefficients: the parameter estimates with their associated standard er-
rors, p-values, and t statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from
x and x1.

How to Cite

To cite the cloglog.net Zelig model:

Skyler J. Cranmer. 2007. ”cloglog.net: Social Network Complementary Log
Log Regression for Dichotomous Dependent Variables” in Kosuke Imai, Gary
King, and Olivia Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.
harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.
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See also

The network complementary log log regression is part of the netglm package by Skyler J.
Cranmer and is built using some of the functionality of the sna package by Carter T. Butts
(Butts and Carley 2001).In addition, advanced users may wish to refer to help(netbinom).
Sample data are fictional.
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12.7 coxph: Cox Proportional Hazards Regression for

Duration Dependent Variables

Choose the Cox proportional hazards regression model if the values in your dependent vari-
able are duration observations. The advantage of the semi-parametric Cox proportional
hazards model over fully parametric models such as the exponential or Weibull models is
that it makes no assumptions about the shape of the baseline hazard. The model only re-
quires the proportional hazards assumption that the baseline hazard does not vary across
observations. The baseline hazard can be estimated from the model via post-hoc analysis.

Syntax

> z.out <- zelig(Surv(Y, C) ~ X1 + X2, model = "coxph", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Cox proportional hazards models require that the dependent variable be in the form Surv(Y,

C), where Y and C are vectors of length n. For each observation i in 1, . . . , n, the value yi

is the duration (lifetime, for example), and the associated ci is a binary variable such that
ci = 1 if the duration is not censored (e.g., the subject dies during the study) or ci = 0 if the
duration is censored (e.g., the subject is still alive at the end of the study). If ci is omitted,
all Y are assumed to be completed; that is, ci defaults to 1 for all observations.

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for Cox
proportional hazards regression:

� robust: defaults to FALSE. If TRUE, zelig() computes robust standard errors based
on sandwich estimators (see Huber (1981) and White (1980)) based on the options in
cluster.

� cluster: if robust = TRUE, you may select a variable to define groups of correlated
observations. Let X3 be a variable that consists of either discrete numeric values,
character strings, or factors that define the clusters. Then

> z.out <- zelig(Surv(Y,C) ~ X1 + X2, robust = TRUE, cluster = "X3",

model = "coxph", data = mydata)

means that the observations can be correlated within the clusters defined by the variable
X3, and that robust standard errors should be calculated according to those clusters. If
robust = TRUE but cluster is not specified, zelig() assumes that each observation
falls into its own cluster.

162



� method: defaults to "efron". Use this argument to specify how to handle ties within
event times. The model assumes that no two event times should theoretically ever be
the same, and any ties that occur are simply because the observation mechanism is not
precise enough. In practice, ties often exist in the data so the model commonly uses
one of three methods to deal with ties.

– Breslow method (method = "breslow"): This method is the simplest com-
putationally but also the least precise, especially as the number of tied events
increases.

– Efron method (method = "efron"): This is the default method and is more
intensive computationally but also more precise than the Breslow method.

– Exact discrete method (method = "exact"): This is the preferred method
if the number of distinct events is rather small due to a large number of ties.
Although it can be very computationally intensive, the exact discrete method,
which computes the exact partial likelihood, is the most precise method when
there are many ties.

Stratified Cox Model

In addition, zelig() also supports the stratified Cox model, where the baseline hazards
are assumed to be different across different strata but the coefficients are restricted to be
the same across strata. Let id be a variable that consists of either discrete numeric values,
character strings, or factors that define the strata. Then the stratified Cox model can be
estimated using strata() in the formula. The user can then find quantities of interest for a
specific stratum by defining the stratum of choice in setx(). If no strata are defined, setx
takes the mode. Strata on setx are defined as followed:

� If strata were defined by a variable (strata(id)), then strata should be defined as
strata = "id=5".

� If strata were defined by a mathematical expression (strata(id>10)), then strata
should be defined as strata = "id>10=TRUE" or strata = "id>10=FALSE".

> z.out <- zelig(Surv(Y,C) ~ X1 + X2 + strata(id), model = "coxph",

data = mydata)

> x.out <- setx(z.out, strata = "id=5")

> s.out <- sim(z.out, x = x.out)

Time-Varying Covariates

zelig() also supports the use of time-varying covariates for the Cox model, where some or
all of the covariates change over time for each case. Let “case” refer to each unit in the data.
Then each case can have one or more “observations”, where each observation has a different
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value for one or more covariates for a specific case.

Estimating a time-varying covariate model with zelig() involves setting up the data dif-
ferently to reflect a counting process. In the typical non-time-varying covariate model, the
cases include a duration time (Y ), a censoring mechanism (C), and covariates (X). A typical
dataset would look like this:

Case Y C X1 X2
1 35 0 4 7
2 56 1 6 11

The user would then estimate the model and find quantities of interest using the following
syntax:

> z.out <- zelig(Surv(Y,C) ~ X1 + X2, model = "coxph", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

With time-varying covariates, each case is composed of multiple observations with start times,
stop times, censoring (event) mechanisms, and covariates. The covariates are assumed to
be constant within the intervals defined by the start and stop times. The covariates change
only between intervals. Thus, the covariates are constant at each observation. The censoring
mechanism equals 1 when an event occurs at the stop time and equals 0 if the observation is
censored or if no event occurs at the stop time. A typical time-varying dataset would look
like this:

Case Start Stop C X1 X2
1 0 26 0 4 7
1 26 35 0 4 10
2 0 39 0 6 11
2 39 56 1 9 5

The user would then estimate the model and find quantities of interest using the following
syntax:

> z.out <- zelig(Surv(Start,Stop,C) ~ X1 + X2, model = "coxph",

data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)
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Examples

1. Example 1: Basic Example

Attaching the sample dataset:

> data(coalition)

Estimating parameter values for the coxph regression:

> z.out1 <- zelig(Surv(duration, ciep12) ~ invest + numst2 + crisis,

+ robust = TRUE, cluster = "polar", model = "coxph", data = coalition)

Setting values for the explanatory variables:

> x.low1 <- setx(z.out1, numst2 = 0)

> x.high1 <- setx(z.out1, numst2 = 1)

Simulating quantities of interest:

> s.out1 <- sim(z.out1, x = x.low1, x1 = x.high1)

> summary(s.out1)

> plot(s.out1)
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2. Example 2: Example with Stratified Cox Model

Estimating parameter values for the stratified coxph regression:

> z.out2 <- zelig(Surv(duration, ciep12) ~ invest + strata(polar) +

+ numst2 + crisis, model = "coxph", data = coalition)

Setting values for the explanatory variables:

> x.low2 <- setx(z.out2, numst2 = 0, strata = "polar=3")

> x.high2 <- setx(z.out2, numst2 = 1, strata = "polar=3")

Simulating quantities of interest:

> s.out2 <- sim(z.out2, x = x.low2, x1 = x.high2)

> summary(s.out2)
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> plot(s.out2)
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3. Example 3: Example with Time-Varying Covariates

Create sample toy dataset (from survival package):

> toy <- as.data.frame(list(start = c(1, 2, 5, 2, 1, 7, 3, 4, 8,

+ 8), stop = c(2, 3, 6, 7, 8, 9, 9, 9, 14, 17), event = c(1,

+ 1, 1, 1, 1, 1, 1, 0, 0, 0), x = c(1, 0, 0, 1, 0, 1, 1, 1,

+ 0, 0), x1 = c(5, 5, 7, 4, 5, 6, 3, 2, 7, 4)))

Estimating parameter values for the coxph regression:

> z.out3 <- zelig(Surv(start, stop, event) ~ x + x1, model = "coxph",

+ data = toy)

Setting values for the explanatory variables:
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> x.low3 <- setx(z.out3, x = 0)

> x.high3 <- setx(z.out3, x = 1)

Simulating quantities of interest:

> s.out3 <- sim(z.out3, x = x.low3, x1 = x.high3)

> summary(s.out3)

> plot(s.out3)
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The Model

Let Y ∗
i be the survival time for observation i. This variable might be censored for some

observations at a fixed time yc such that the fully observed dependent variable, Yi, is defined
as

Yi =

{
Y ∗

i if Y ∗
i ≤ yc

yc if Y ∗
i > yc
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� The stochastic component is described by the distribution of the partially observed
variable Y ∗:

Y ∗
i ∼ f(y∗i |µi, α)

where f is an unspecified distribution with some mean µi and shape α. In the Cox
proportional hazards model, the distributional form of the duration times is unknown
and left unparameterized. Instead it uses the proportional hazards assumption to
model the set of (ordered) event times on particular covariates.

An important component of all survival models is the hazard function h(t), which
measures the probability of an observation not surviving past time t given survival up
to t. The hazard function is given by

hi(t) = λ(t)× λi

where λ(t) is the baseline hazard (when all covariates equal 0), which varies over t but
not over i, and λi is the parameterized part of the hazard function, which varies over
i but not over t (the proportional hazards assumption).

The model estimates the parameters without a distributional assumption on the du-
ration times by focusing on the occurrence of events and ignoring the time between
events. The data are reconceptualized from duration times to K discrete event times
such that each yi corresponds to exactly one event time ti. The model assumes that
no two yi have the same event times.

For each event time, denote R(ti) as the set of all observations j that are at risk at
ti. Given that an event occurred at ti, we are interested in the conditional probability
that the event occurred in observation i. The conditional probability is given by

Pr(yi = ti | an event at ti) =
hi(ti)∑

j∈R(ti)
hj(ti)

=
λ(ti)λi∑

j∈R(ti)
λ(ti)λj

=
λi∑

j∈R(ti)
λj

where the numerator denotes the probability of observation i experiencing the event
at ti and the denominator denotes the probability that an event occurred at ti.

� The systematic component λi is modeled as

λi = exp(xiβ)

where xi is the vector of explanatory variables, and β is the vector of coefficients.
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� Each risk set (and thus each event time) contributes one conditional probability to the
partial likelihood function, given by

L(β|y) =
K∏

i=1

[
exp(xiβ)∑

j∈R(ti)
exp(xjβ)

]ci

where ci is the binary censoring variable. Note that event times corresponding to
censored observations are not counted since their corresponding terms for the partial
likelihood are exponentiated to 0. However, all censored observations are considered
part of the risk sets R(ti) for all event times prior to their censoring, but otherwise
do not contribute to the partial likelihood. For an example, see Box-Steffensmeier and
Jones (2004, 53).

� In the case of the Cox model with time-varying covariates, the partial likelihood func-
tion is similarly given by

L(β|y) =
K∏

i=1

[
exp(xi(ti) β)∑

j∈R(ti)
exp(xj(ti) β)

]ci

where xi(ti) is the value of the covariates at time ti. Denote “cases” as the units in our
data. Each case is composed of one or more observations corresponding to different
values in one or more covariates. At each event time ti, the partial likelihood evaluates
the hazard of the case in which the event occurred in with its covariate values at ti (the
numerator) and the hazard of all the other cases at risk at ti (risk set R(ti)) with their
covariate values at ti (the denominator). See previous section for more information.

� Although the model assumes that there are no tied event times, in practice, data often
have tied event times due to imprecise measurement. There are three commonly used
methods to deal with tied event times.

– Breslow method: The Breslow method simply treats the risk set as the same
for all tied events in the risk set. Suppose observations 1 and 3 are tied in a
risk set of observations 1, 2, 3, and 4. Theoretically, if the event occurred in 1
before in 3, then the risk set for observation 3 would have dropped observation 1.
However, since we cannot tell which event occurred first, in the partial likelihood,
the risk set for observation 1 and observation 3 are the same, consisting of both
observations 1 and 3 as well as 2 and 4. For each risk set R(ti), let di equal the
number of tied events in the ith risk set and let Di denote the set of di tied events.
For risk sets with no tied events, di = 1. The approximate partial likelihood for
the Breslow method is given by

L(β|y) =
K∏

i=1

 ∏
i∈Di

exp(xiβ)[∑
j∈R(ti)

exp(xjβ)
]di


ci
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– Efron method: The Efron method is more precise because it tries to account
for how the risk set changes depending on the sequence of tied events. For an
intuition behind the Efron approximation, suppose as in the previous example
that observations 1 and 3 are tied in a risk set of observations 1, 2, 3, and 4.
If the event occurred in 1 before 3, then the risk set for the second event would
consist of observations {2, 3, 4}. On the other hand, if the event occurred in 3
before 1, then the risk set for the second event would consist of observations
{1, 2, 4}. Since both cases are equally plausible with the tied event times, the
Efron approximation suggests that the second risk set would consist of {2, 3, 4}
with 0.5 probability and {1, 2, 4} with 0.5 probability. The Efron approximate
partial likelihood is then given by

L(β|y) =
K∏

i=1

 ∏
i∈Di

exp(xiβ)∏di

r=1

[∑
j∈R(ti)

exp(xjβ)− r−1
di

∑
j∈Di

exp(xjβ)
]
ci

where r indexes Di, which is the set of di tied events for the ith risk set.

– Exact discrete method: Unlike the Breslow and Efron methods, which assume
a continuous time process, the exact discrete method assumes a discrete time
process where the tied events actually do occur at exactly the same time. The
method begins by assuming that the data are grouped into risk sets R(ti). In each
risk set and for each observation, denote a binary dependent variable which takes
on the value of 1 for each observation that experiences the event and 0 for each
observation that does not experience the event. Denote di as the number of 1s in
R(ti) and Di as the set of observations with 1s in R(ti). Di represents a specific
pattern of 0s and 1s (in our previous example, the specific pattern of 0s and 1s is
that observations 1 and 3 experienced an event while 2 and 4 did not, so Di is the
set {1, 3}). Then for each R(ti), we are interested in the conditional probability
of getting the specific pattern of 0s and 1s given the total number of 1s in R(ti).
Thus, the conditional probability for each risk set is given as

Pr(Di|di) =

∏
i∈Di

exp(xiβ)∑M
m=1

[∏
j∈Aim

exp(xjβ)
]

where Aim is a set of observations that represents one combination of di number
of 1s in R(ti). There are M possible combinations for each risk set. The partial
likelihood then takes the conditional probability over each i risk set. Note that the
exact discrete approximation method is equivalent to a conditional logit model.

Quantities of Interest

� The hazard ratio (qi$hr) is defined as

HR =
h(t | x1)

h(t | x)
=
λ(t) exp(x1β)

λ(t) exp(xβ)
=

exp(x1β)

exp(xβ)
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given draws of β from its sampling distribution, where x and x1 are values of the
independent variables chosen by the user. Typically, x and x1 should only differ over
one independent variable to interpret the effect of that variable on the hazard rate. In
a stratified Cox model, the strata should be the same in both x and x1.

� The survival function (qi$survival) is defined as the fraction of observations surviving
past time t. It is derived from the cumulative hazard function (exp(-cumhaz)). The
confidence interval of the survival function is drawn on the log(survival) scale.

� The cumulative hazard function (qi$cumhaz) is defined as -log(survival). Although
there is no direct interpretation, the cumulative hazard function is estimated from the
data and then other quantities of interest are derived from the cumulative hazard
function.

� The hazard function (qi$hazard) is defined as the probability of an observation not
surviving past time t given survival up to t. It is derived directly from the cumulative
hazard function.

� For MI data, if survival times are multiply imputed, we suggest having a larger number
of imputed datasets. Because the quantities of interest are derived semi-parametrically,
there may be instances in which survival times appear only in one or a small fraction
of the multiply imputed datasets, which may bias the results.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(Surv(y,c) ~ x, model = "coxph", data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– var: the variance-covariance matrix.

– residuals: the working residuals of the fit.

– loglik: the log-likelihood for the baseline and full models

– linear.predictors: a mean-adjusted linear predictor xiβ, where xi = xi −
mean(x).

� From summary(z.out), you may extract:

– coef: the parameter estimates with their associated standard errors, p-values,
and z-statistics.
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– conf.int: exp(β) and their associated confidence intervals.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$hr: the simulated hazard ratios for the specified values of x and x1.

– qi$survival: the estimated survival function for the values specified in x.

– qi$cumhaz: the estimated cumulative hazard function for the values specified in
x.

– qi$hazard: the estimated hazard function for the values specified in x.

How To Cite

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The Cox proportional hazards model is part of the survival library by Terry Therneau (Th-
erneau and Grambsch 2000), ported to R by Thomas Lumley. Advanced users may wish to
refer to help(coxph) and help(survfit) in the survival library. Sample data are from ?
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12.8 ei.dynamic: Quinn’s Dynamic Ecological Inference

Model

Given contingency tables with observed marginals, ecological inference (ei) models estimate
each internal cell value for each table. Quinn’s dynamic ei model estimates a dynamic
Bayesian model for 2× 2 tables with temporal dependence across tables (units). The model
is implemented using a Markov Chain Monte Carlo algorithm (via a combination of slice and
Gibbs sampling). For a hierarchical Bayesian implementation of ei see Quinn’s dynamic ei
model (Section 12.9). For contingency tables larger than 2 rows by 2 columns, see R×C ei
(Section ??).

Syntax

> z.out <- zelig(cbind(t0, t1) ~ x0 + x1, N = NULL,

model = "MCMCei.dynamic", data = mydata)

> x.out <- setx(z.out, fn = NULL, cond = TRUE)

> s.out <- sim(z.out, x = x.out)

Inputs

� t0, t1: numeric vectors (either counts or proportions) containing the column margins
of the units to be analyzed.

� x0, x1: numeric vectors (either counts or proportions) containing the row margins of
the units to be analyzed.

� N: total counts in each contingency table (unit). If t0,t1, x0 and x1 are proportions,
you must specify N.

Additional Inputs

In addition, zelig() accepts the following additional inputs for ei.dynamic to monitor the
convergence of the Markov chain:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 5,000).

� mcmc: number of the MCMC iterations after burnin (defaults to 50,000).

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen.
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� seed: seed for the random number generator. The default is NA which corresponds to
a random seed of 12345.

The model also accepts the following additional arguments to specify priors and other pa-
rameters:

� W: a p× p numeric matrix describing the structure of the temporal dependence among
elements of θ0 and θ1. The default value is 0, which constructs a weight matrix cor-
responding to random walk priors for θ0 and θ1 (assuming that the tables are equally
spaced throughout time, and that the elements of t0, t1,x0,x1 are temporally ordered).

� a0: a0/2 is the shape parameter for the Inverse Gamma prior on σ2
0. The default is

0.825.

� b0: b0/2 is the scale parameter for the Inverse Gamma prior on σ2
0. The default is

0.0105.

� a1: a1/2 is the shape parameter for the Inverse Gamma prior on σ2
1. The default is

0.825.

� b1: b1/2 is the scale parameter for the Inverse Gamma prior on σ2
1. The default is

0.0105.

Users may wish to refer to help(MCMCdynamicEI) for more options.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.
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If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

Examples

1. Basic examples
Attaching the example dataset:

> data(eidat)

Estimating the model using ei.dynamic:

> z.out <- zelig(cbind(t0, t1) ~ x0 + x1, model = "ei.dynamic",

+ data = eidat, mcmc = 40000, thin = 10, burnin = 10000, verbose = TRUE)

> summary(z.out)

Setting values for in-sample simulations given the marginal values of t0, t1, x0, and
x1:

> x.out <- setx(z.out, fn = NULL, cond = TRUE)

In-sample simulations from the posterior distribution:

> s.out <- sim(z.out, x = x.out)

Summarizing in-sample simulations at aggregate level weighted by the count in each
unit:

> summary(s.out)

Summarizing in-sample simulations at unit level for the first 5 units:

> summary(s.out, subset = 1:5)
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Model

Consider the following 2 × 2 contingency table for the racial voting example. For each
geographical unit i = 1, . . . , p, the marginals t0i , t

1
i , x

0
i , and x1

i are known, and we would like
to estimate n00

i , n01
i , n10

i , and n11
i .

No Vote Vote
Black n00

i n01
i x0

i

White n10
i n11

i x1
i

t0i t1i Ni

The marginal values x0
i , x

1
i , t

0
i , t

1
i are observed as either counts or fractions. If fractions, the

counts can be obtained by multiplying by the total counts per table Ni = n00
i +n01

i +n10
i +n11

i ,
and rounding to the nearest integer. Although there are four internal cells, only two un-
knowns are modeled since n01

i = x0
i − n00

i and n11
i = s1

i − n10
i .

The hierarchical Bayesian model for ecological inference in 2×2 is illustrated as following:

� The stochastic component of the model assumes that

n00
i | x0

i , β
b
i ∼ Binomial

(
x0

i , β
b
i

)
,

n10
i | x1

i , β
w
i ∼ Binomial

(
x1

i , β
w
i

)
where βb

i is the fraction of the black voters who vote and βw
i is the fraction of the

white voters who vote. βb
i and βw

i as well as their aggregate summaries are the focus
of inference.

� The systematic component of the model is

βb
i =

exp θ0
i

1− exp θ0
i

βw
i =

exp θ1
i

1− exp θ1
i

The logit transformations of βb
i and βw

i , θ0
i , and θ1

i now take value on the real line.
(Future versions may allow βb

i and βw
i to be functions of observed covariates.)

� The priors for θ0
i and θ1

i are given by

θ0
i | σ2

0 ∝ 1

σp
0

exp

(
− 1

2σ2
0

θ′0Pθ0

)
θ1

i | σ2
1 ∝ 1

σp
1

exp

(
− 1

2σ2
1

θ′1Pθ1

)
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where P is a p × p matrix whose off diagonal elements Pts (t 6= s) equal −Wts (the
negative values of the corresponding elements of the weight matrix W ), and diagonal
elements Ptt =

∑
s 6=tWts. Scale parameters σ2

0 and σ2
1 have hyperprior distributions as

given below.

� The hyperpriors for σ2
0 and σ2

1 are given by

σ2
0 ∼ Inverse Gamma

(
a0

2
,
b0
2

)
,

σ2
1 ∼ Inverse Gamma

(
a1

2
,
b1
2

)
,

where a0/2 and a1/2 are the shape parameters of the (independent) Gamma distribu-
tions while b0/2 and b1/2 are the scale parameters.

The default hyperpriors for µ0, µ1, σ
2
0, and σ2

1 are chosen such that the prior distribu-
tions for βb and βw are flat.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

> z.out <- (cbind(t0, t1) ~ x0 + x1, N = NULL,

model = "ei.dynamic", data = mydata)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the quantities of interest by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the parameters.

– data: the name of the input data frame.

– N: the total counts when the inputs are fractions.

– seed: the random seed used in the model.

� From summary(z.out), you may extract:

– summary: a matrix containing the summary information of the posterior estima-
tion of βb

i andβw
i for each unit and the parameters µ0, µ1, σ1 and σ2 based on

the posterior distribution. The first p rows correspond to βb
i , i = 1, . . . p, the row
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names are in the form of p0tablei. The (p+ 1)-th to the 2p-th rows correspond
to βw

i , i = 1, . . . , p. The row names are in the form of p1tablei. The last four
rows contain information about µ0, µ1, σ

2
0 and σ2

1, the prior means and variances
of θ0 and θ1.

� From the sim() output object s.out, you may extract quantities of interest arranged
as arrays indexed by simulation × column × row × observation, where column and
row refer to the column dimension and the row dimension of the ecological table,
respectively. In this model, only 2×2 contingency tables are analyzed, hence column= 2
and row= 2 in all cases. Available quantities are:

– qi$ev: the simulated expected values of each internal cell given the observed
marginals.

– qi$pr: the simulated expected values of each internal cell given the observed
marginals.

How to Cite

To cite the ei.dynamic Zelig model:

Ben Goodrich and Ying Lu. 2007. ”ei.dynamic: Quinn’s Dynamic Ecological In-
ference Model” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

ei.dynamic function is part of the MCMCpack library by Andrew D. Martin and Kevin M.
Quinn (Martin and Quinn 2005). The convergence diagnostics are part of the CODA library
by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines (Plummer et al. 2005).
Sample date are adapted from Martin and Quinn (2005).
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12.9 ei.hier: Hierarchical Ecological Inference Model

for 2× 2 Tables

Given contingency tables with observed marginals, ecological inference (ei) models estimate
each internal cell value for each table. The hierarchical ei model estimates a Bayesian model
for 2 × 2 tables. The model is implemented using a Markov Chain Monte Carlo algorithm
(via a combination of slice and Gibbs sampling). For a Bayesian implementation of ei
that accounts for temporal dependence, see Quinn’s dynamic ei model (Section 12.8). For
contingency tables larger than 2 rows by 2 columns, see R×C ei (Section ??).

Syntax

> z.out <- zelig(cbind(t0, t1) ~ x0 + x1, N = NULL,

model = "MCMCei.hier", data = mydata)

> x.out <- setx(z.out, fn = NULL, cond = TRUE)

> s.out <- sim(z.out, x = x.out)

Inputs

� t0, t1: numeric vectors (either counts or proportions) containing the column margins
of the units to be analyzed.

� x0, x1: numeric vectors (either counts or proportions) containing the row margins of
the units to be analyzed.

� N: total counts per contingency table (unit). If t0,t1, x0 and x1 are proportions, you
must specify N.

Additional Inputs

In addition, zelig() accepts the following additional inputs for ei.hier to monitor the
convergence of the Markov chain:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 5,000).

� mcmc: number of the MCMC iterations after burnin (defaults to 50,000).

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed of 12345.
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The model also accepts the following additional arguments to specify prior parameters used
in the model:

� m0: prior mean of µ0 (defaults to 0).

� M0: prior variance of µ0 (defaults to 2.287656).

� m1: prior mean of µ1 (defaults to 0).

� M1: prior variance of µ1 (defaults to 2.287656).

� a0: a0/2 is the shape parameter for the Inverse Gamma prior on σ2
0 (defaults to 0.825).

� b0: b0/2 is the scale parameter for the Inverse Gamma prior on σ2
0 (defaults to 0.0105).

� a1: a1/2 is the shape parameter for the Inverse Gamma prior on σ2
1 (defaults to 0.825).

� b1: b1/2 is the scale parameter for the Inverse Gamma prior on σ2
1 (defaults to 0.0105).

Users may wish to refer to help(MCMChierEI) for more information.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

181



Examples

1. Basic examples
Attaching the example dataset:

> data(eidat)

> eidat

Estimating the model using ei.hier:

> z.out <- zelig(cbind(t0, t1) ~ x0 + x1, model = "ei.hier", data = eidat,

+ mcmc = 40000, thin = 10, burnin = 10000, verbose = TRUE)

> summary(z.out)

Setting values for in-sample simulations given marginal values of x0, x1, t0, and t1:

> x.out <- setx(z.out, fn = NULL, cond = TRUE)

In-sample simulations from the posterior distribution:

> s.out <- sim(z.out, x = x.out)

Summarizing in-sample simulations at aggregate level weighted by the count in each
unit:

> summary(s.out)

Summarizing in-sample simulations at unit level for the first 5 units:

> summary(s.out, subset = 1:5)
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Model

Consider the following 2 × 2 contingency table for the racial voting example. For each
geographical unit i = 1, . . . , p, the marginals t0i , t

1
i , x

0
i , and x1

i are known, and we would like
to estimate n00

i , n01
i , n10

i , and n11
i .

No Vote Vote
Black n00

i n01
i x0

i

White n10
i n11

i x1
i

t0i t1i Ni

The marginal values x0
i , x

1
i , t

0
i , t

1
i are observed as either counts or fractions. If fractions,

the counts can be obtained by multiplying by the total counts per table Ni = n00
i + n01

i +
n10

i + n11
i and rounding to the nearest integer. Although there are four internal cells, only

two unknowns are modeled since n01
i = x0

i − n00
i and n11

i = s1
i − n10

i .
The hierarchical Bayesian model for ecological inference in 2×2 is illustrated as following:

� The stochastic component of the model assumes that

n00
i | x0

i , β
b
i ∼ Binomial

(
x0

i , β
b
i

)
,

n10
i | x1

i , β
w
i ∼ Binomial

(
x1

i , β
w
i

)
where βb

i is the fraction of the black voters who vote and βw
i is the fraction of the white

voters who vote. βb
i and βw

i as well as their aggregate level summaries are the focus of
inference.

� The systematic component is

βb
i =

exp θ0
i

1− exp θ0
i

βw
i =

exp θ1
i

1− exp θ1
i

The logit transformations of βb
i and βw

i , θ0
i , and θ1

i now take value on the real line.
(Future versions may allow βb

i and βw
i to be functions of observed covariates.)

� The priors for θ0
i and θ1

i are given by

θ0
i | µ0, σ

2
0 ∼ Normal

(
µ0, σ

2
0

)
,

θ1
i | µ1, σ

2
1 ∼ Normal

(
µ1, σ

2
1

)
where µ0 and µ1 are the means, and σ2

0 and σ2
1 are the variances of the two corresponding

(independent) normal distributions.
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� The hyperpriors for µ0 and µ1 are given by

µ0 ∼ Normal (m0,M0) ,

µ1 ∼ Normal (m1,M1) ,

where m0 and m1 are the means of the (independent) normal distributions while M0

and M1 are the variances.

� The hyperpriors for σ2
0 and σ2

1 are given by

σ2
0 ∼ Inverse Gamma

(
a0

2
,
b0
2

)
,

σ2
1 ∼ Inverse Gamma

(
a1

2
,
b1
2

)
,

where a0/2 and a1/2 are the shape parameters of the (independent) Gamma distribu-
tions while b0/2 and b1/2 are the scale parameters.

The default hyperpriors for µ0, µ1, σ
2
0, and σ2

1 are chosen such that the prior distribu-
tions of βb and βw are flat.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run

> z.out <- (cbind(t0, t1) ~ x0 + x1, N = NULL,

model = "ei.hier", data = mydata)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the quantities of interest by using z.out$coefficients,
and a default summary of information through summary(z.out). Other elements available
through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the parameters.

– zelig.data: the input data frame if save.data = TRUE.

– N: the total counts when the inputs are fractions.

– seed: the random seed used in the model.

� From summary(z.out), you may extract:
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– summary: a matrix containing the summary information of the posterior estima-
tion of βb

i andβw
i for each unit and the parameters µ0, µ1, σ1 and σ2 based on

the posterior distribution. The first p rows correspond to βb
i , i = 1, . . . p, the row

names are in the form of p0tablei. The (p+ 1)-th to the 2p-th rows correspond
to βw

i , i = 1, . . . , p. The row names are in the form of p1tablei. The last four
rows contain information about µ0, µ1, σ

2
0 and σ2

1, the prior means and variances
of θ0 and θ1.

� From the sim() output object s.out, you may extract quantities of interest arranged
as arrays indexed by simulation × column × row × observation, where column and
row refer to the column dimension and the row dimension of the contingency table,
respectively. In this model, only 2×2 contingency tables are analyzed, hence column= 2
and row= 2 in all cases. Available quantities are:

– qi$ev: the simulated expected values of each internal cell given the observed
marginals.

– qi$pr: the simulated expected values of each internal cell given the observed
marginals.

How to Cite

To cite the ei.hier Zelig model:

Ben Goodrich and Ying Lu. 2007. ”ei.hier: Hierarchical Ecological Inference
Model for 2 x 2 Tables” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig:
Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

ei.hier function is part of the MCMCpack library by Andrew D. Martin and Kevin M. Quinn
(Martin and Quinn 2005). The convergence diagnostics are part of the CODA library by
Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines (Plummer et al. 2005). Sample
date are adapted from Martin and Quinn (2005).
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12.10 ei.RxC: Hierarchical Multinomial-Dirichlet Eco-

logical Inference Model for R× C Tables

Given n contingency tables, each with observed marginals (column and row totals), ecological
inference (ei) estimates the internal cell values in each table. The hierarchical Multinomial-
Dirichlet model estimates cell counts in R × C tables. The model is implemented using a
nonlinear least squares approximation and, with bootstrapping for standard errors, had good
frequentist properties.

Syntax

> z.out <- zelig(cbind(T0, T1, T2, T3) ~ X0 + X1,

covar = NULL,

model = "ei.RxC", data = mydata)

> x.out <- setx(z.out, fn = NULL)

> s.out <- sim(z.out)

Inputs

� T0, T1, T2,. . . , TC: numeric vectors (either counts, or proportions that sum to one for
each row) containing the column margins of the units to be analyzed.

� X0, X1, X2,. . . ,XR: numeric vectors (either counts, or proportions that sum to one for
each row) containing the row margins of the units to be analyzed.

� covar: (optional) a covariate that varies across tables, specified as covar = ~ Z1, for
example. (The model only accepts one covariate.)

Examples

1. Basic examples: No covariate
Attaching the example dataset:

> data(Weimar)

Estimating the model:

> z.out <- zelig(cbind(Nazi, Government, Communists, FarRight,

+ Other) ~ shareunemployed + shareblue + sharewhite + shareself +

+ sharedomestic, model = "ei.RxC", data = Weimar)

> summary(z.out)

Estimate fractions of different social groups that support political parties:

> s.out <- sim(z.out, num = 10)
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Summarizing fractions of different social groups that support political parties:

> summary(s.out)

2. Example of covariates being present in the model

Using the example dataset Weimar and estimating the model

> z.out <- zelig(cbind(Nazi, Government, Communists, FarRight,

+ Other) ~ shareunemployed + shareblue + sharewhite + shareself +

+ sharedomestic, covar = ~shareprotestants, model = "ei.RxC",

+ data = Weimar)

> summary(z.out)

Set the covariate to its default (mean/median) value

> x.out <- setx(z.out)

Estimate fractions of different social groups that support political parties:

> s.out <- sim(z.out, num = 100)

Summarizing fractions of different social groups that support political parties:

> s.out <- summary(s.out)
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Model

Consider the following 5× 5 contingency table for the voting patterns in Weimar Germany.
For each geographical unit i (i = 1, . . . , p), the marginals T1i,. . . , TCi, X1i,. . . , XRi are known
for each of the p electoral precincts, and we would like to estimate (βrc

i , r = 1, . . . , R, c =
1, . . . , C − 1) which are the fractions of people in social class r who vote for party c, for all
r and c.

Nazi Government Communists Far Right Other

Unemployed βi
11 βi

12 βi
13 βi

14 1−
∑4

c=1 β
i
1c X i

1

Blue βi
21 βi

22 βi
23 βi

24 1−
∑4

c=1 β
i
2c X i

2

White βi
31 βi

32 βi
33 βi

34 1−
∑4

c=1 β
i
3c X i

3

Self βi
41 βi

42 βi
43 βi

44 1−
∑4

c=1 β
i
4c X i

4

Domestic βi
51 βi

52 βi
53 βi

54 1−
∑4

c=1 β
i
5c X i

5

T1i T2i T3i T4i 1−
∑4

c=1 βci

The marginal values X1i, . . . , XRi, T1i, . . . , TCi may be observed as counts or fractions.
Let T

′
i = (T

′
1i, T

′
2i, . . . , T

′
Ci) be the number of voting age persons who turn out to vote for

different parties. There are three levels of hierarchy in the Multinomial-Dirichlet ei model.
At the first stage, we model the data as:

� The stochastic component is described T
′
i which follows a multinomial distribution:

T
′

i ∼ Multinomial(Θ1i, . . . ,ΘCi)

� The systematic components are

Θci =
R∑

r=1

βi
rcXri for c = 1, . . . , C

At the second stage, we use an optional covariate to model Θci’s and βi
qrc:

� The stochastic component is described by βi
r = (βr1, βr2, . . . , βr,C−1) for i = 1, . . . , , p

and r = 1, . . . , R, which follows a Dirichlet distribution:

βi
r ∼ Dirichlet(αi

r1, . . . , α
i
rc)

� The systematic components are

αi
rc =

drexp(γrc + δrcZi)

dr(1 +
∑C−1

j=1 exp(γrj + δrjZi))
=

exp(γrc + δrcZi)

1 +
∑C−1

j=1 exp(γrj + δrjZi)

for i = 1, . . . , p, r = 1, . . . , R, and c = 1, . . . , C − 1.

In the third stage, we assume that the regression parameters (the γrc’s and δrc’s) are a
priori independent, and put a flat prior on these regression parameters. The parameters
dr for r = 1, . . . , R are assumed to follow exponential distributions with mean 1

λ
.
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Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run

> z.out <- zelig(cbind(T0, T1, T2) ~ X0 + X1 + X2,

model = "ei.RxC", data = mydata)

then you may examine the available information in z.out by using names(z.out). For
example,

� From the zelig() output object z.out$coefficients are the estimates of γij (and
also δij, if covariates are present). The parameters are returned as a single vector of
length R× (C − 1). If there is a covariate, δ is concatenated to it.

� From the sim() output object, you may extract the parameters βij corresponding to
the estimated fractions of different social groups that support different political parties,
by using s.out$qi$ev. For each precinct, that will be a matrix with dimensions:
simulations ×R× C.
summary(s.out) will give you the nationwide aggregate parameters.

How to Cite

To cite the ei.RxC Zelig model:

Jason Wittenberg, Ferdinand Alimadhi, Badri Narayan Bhaskar, and Olivia Lau.
2007. ”ei.RxC: Hierarchical Multinomial-Dirichlet Ecological Inference Model
for R x C Tables” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Every-
one’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

For more information please see Rosen et al. (2001)
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12.11 exp: Exponential Regression for Duration De-

pendent Variables

Use the exponential duration regression model if you have a dependent variable representing
a duration (time until an event). The model assumes a constant hazard rate for all events.
The dependent variable may be censored (for observations have not yet been completed when
data were collected).

Syntax

> z.out <- zelig(Surv(Y, C) ~ X, model = "exp", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Exponential models require that the dependent variable be in the form Surv(Y, C), where Y
and C are vectors of length n. For each observation i in 1, . . . , n, the value yi is the duration
(lifetime, for example), and the associated ci is a binary variable such that ci = 1 if the
duration is not censored (e.g., the subject dies during the study) or ci = 0 if the duration is
censored (e.g., the subject is still alive at the end of the study and is know to live at least
as long as yi). If ci is omitted, all Y are assumed to be completed; that is, time defaults to
1 for all observations.

Input Values

In addition to the standard inputs, zelig() takes the following additional options for expo-
nential regression:

� robust: defaults to FALSE. If TRUE, zelig() computes robust standard errors based
on sandwich estimators (see Huber (1981) and White (1980)) and the options selected
in cluster.

� cluster: if robust = TRUE, you may select a variable to define groups of correlated
observations. Let x3 be a variable that consists of either discrete numeric values,
character strings, or factors that define strata. Then

> z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3",

model = "exp", data = mydata)

means that the observations can be correlated within the strata defined by the variable
x3, and that robust standard errors should be calculated according to those clusters. If
robust = TRUE but cluster is not specified, zelig() assumes that each observation
falls into its own cluster.
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Example

Attach the sample data:

> data(coalition)

Estimate the model:

> z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2, model = "exp",

+ data = coalition)

View the regression output:

> summary(z.out)

Set the baseline values (with the ruling coalition in the minority) and the alternative values
(with the ruling coalition in the majority) for X:

> x.low <- setx(z.out, numst2 = 0)

> x.high <- setx(z.out, numst2 = 1)

Simulate expected values (qi$ev) and first differences (qi$fd):

> s.out <- sim(z.out, x = x.low, x1 = x.high)

Summarize quantities of interest and produce some plots:

> summary(s.out)

> plot(s.out)
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Model

Let Y ∗
i be the survival time for observation i. This variable might be censored for some

observations at a fixed time yc such that the fully observed dependent variable, Yi, is defined
as

Yi =

{
Y ∗

i if Y ∗
i ≤ yc

yc if Y ∗
i > yc

� The stochastic component is described by the distribution of the partially observed
variable Y ∗. We assume Y ∗

i follows the exponential distribution whose density function
is given by

f(y∗i | λi) =
1

λi

exp

(
−y

∗
i

λi

)
for y∗i ≥ 0 and λi > 0. The mean of this distribution is λi.

In addition, survival models like the exponential have three additional properties. The
hazard function h(t) measures the probability of not surviving past time t given survival
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up to t. In general, the hazard function is equal to f(t)/S(t) where the survival function
S(t) = 1 −

∫ t

0
f(s)ds represents the fraction still surviving at time t. The cumulative

hazard function H(t) describes the probability of dying before time t. In general,
H(t) =

∫ t

0
h(s)ds = − logS(t). In the case of the exponential model,

h(t) =
1

λi

S(t) = exp

(
− t

λi

)
H(t) =

t

λi

For the exponential model, the hazard function h(t) is constant over time. The Weibull
model and lognormal models allow the hazard function to vary as a function of elapsed
time (see Section 12.68 and Section 12.31 respectively).

� The systematic component λi is modeled as

λi = exp(xiβ),

where xi is the vector of explanatory variables, and β is the vector of coefficients.

Quantities of Interest

� The expected values (qi$ev) for the exponential model are simulations of the expected
duration given xi and draws of β from its posterior,

E(Y ) = λi = exp(xiβ).

� The predicted values (qi$pr) are draws from the exponential distribution with rate
equal to the expected value.

� The first difference (or difference in expected values, qi$ev.diff), is

FD = E(Y | x1)− E(Y | x), (12.1)

where x and x1 are different vectors of values for the explanatory variables.

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. When Yi(ti = 1) is censored rather than observed, we replace it with

193



a simulation from the model given available knowledge of the censoring process. Vari-
ation in the simulations is due to two factors: uncertainty in the imputation process
for censored y∗i and uncertainty in simulating E[Yi(ti = 0)], the counterfactual ex-
pected value of Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. When Yi(ti = 1) is censored rather than observed, we replace it with a
simulation from the model given available knowledge of the censoring process. Variation
in the simulations is due to two factors: uncertainty in the imputation process for

censored y∗i and uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted value
of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(Surv(Y, C) ~ X, model = "exp", data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– icoef: parameter estimates for the intercept and scale parameter. While the scale
parameter varies for the Weibull distribution, it is fixed to 1 for the exponential
distribution (which is modeled as a special case of the Weibull).

– var: the variance-covariance matrix for the estimates of β.

– loglik: a vector containing the log-likelihood for the model and intercept only
(respectively).

– linear.predictors: the vector of xiβ.

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.
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� Most of this may be conveniently summarized using summary(z.out). From summary(z.out),
you may additionally extract:

– table: the parameter estimates with their associated standard errors, p-values,
and t-statistics. For example, summary(z.out)$table

� From the sim() output stored in s.out:

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from a distribution defined by the
expected values.

– qi$fd: the simulated first differences between the simulated expected values for
x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the exp Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”exp: Exponential Regression for
Duration Dependent Variables” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The exponential function is part of the survival library by Terry Therneau, ported to R by
Thomas Lumley. Advanced users may wish to refer to help(survfit) in the survival library
and Venables and Ripley (2002).Sample data are from King et al. (1990).
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12.12 factor.bayes: Bayesian Factor Analysis

Given some unobserved explanatory variables and observed dependent variables, the Normal
theory factor analysis model estimates the latent factors. The model is implemented using a
Markov Chain Monte Carlo algorithm (Gibbs sampling with data augmentation). For factor
analysis with ordinal dependent variables, see ordered factor analysis (Section 12.14), and for
a mix of types of dependent variables, see the mixed factor analysis model (Section 12.13).

Syntax

> z.out <- zelig(cbind(Y1 ,Y2, Y3) ~ NULL, factors = 2,

model = "factor.bayes", data = mydata)

Inputs

zelig() takes the following functions for factor.bayes:

� Y1, Y2, and Y3: variables of interest in factor analysis (manifest variables), assumed to
be normally distributed. The model requires a minimum of three manifest variables.

� factors: number of the factors to be fitted (defaults to 2).

Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:

� lambda.constraints: list containing the equality or inequality constraints on the
factor loadings. Choose from one of the following forms:

– varname = list(): by default, no constraints are imposed.

– varname = list(d, c): constrains the dth loading for the variable named varname

to be equal to c.

– varname = list(d, "+"): constrains the dth loading for the variable named
varname to be positive;

– varname = list(d, "-"): constrains the dth loading for the variable named
varname to be negative.

� std.var: defaults to FALSE (manifest variables are rescaled to zero mean, but retain
observed variance). If TRUE, the manifest variables are rescaled to be mean zero and
unit variance.

In addition, zelig() accepts the following additional inputs for bayes.factor:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).

� mcmc: number of the MCMC iterations after burnin (defaults to 20,000).
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� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed 12345.

� Lambda.start: starting values of the factor loading matrix Λ, either a scalar (all un-
constrained loadings are set to that value), or a matrix with compatible dimensions.
The default is NA, where the start value are set to be 0 for unconstrained factor load-
ings, and 0.5 or −0.5 for constrained factor loadings (depending on the nature of the
constraints).

� Psi.start: starting values for the uniquenesses, either a scalar (the starting values for
all diagonal elements of Ψ are set to be this value), or a vector with length equal to
the number of manifest variables. In the latter case, the starting values of the diagonal
elements of Ψ take the values of Psi.start. The default value is NA where the starting
values of the all the uniquenesses are set to be 0.5.

� store.lambda: defaults to TRUE, which stores the posterior draws of the factor loadings.

� store.scores: defaults to FALSE. If TRUE, stores the posterior draws of the factor
scores. (Storing factor scores may take large amount of memory for a large number of
draws or observations.)

The model also accepts the following additional arguments to specify prior parameters:

� l0: mean of the Normal prior for the factor loadings, either a scalar or a matrix with
the same dimensions as Λ. If a scalar value, that value will be the prior mean for all
the factor loadings. Defaults to 0.

� L0: precision parameter of the Normal prior for the factor loadings, either a scalar or
a matrix with the same dimensions as Λ. If L0 takes a scalar value, then the precision
matrix will be a diagonal matrix with the diagonal elements set to that value. The
default value is 0, which leads to an improper prior.

� a0: the shape parameter of the Inverse Gamma prior for the uniquenesses is a0/2. It
can take a scalar value or a vector. The default value is 0.001.

� b0: the shape parameter of the Inverse Gamma prior for the uniquenesses is b0/2. It
can take a scalar value or a vector. The default value is 0.001.

Zelig users may wish to refer to help(MCMCfactanal) for more information.
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Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

Examples

1. Basic Example
Attaching the sample dataset:

> data(swiss)

> names(swiss) <- c("Fert", "Agr", "Exam", "Educ", "Cath", "InfMort")

Factor analysis:

> z.out <- zelig(cbind(Agr, Exam, Educ, Cath, InfMort) ~ NULL,

+ model = "factor.bayes", data = swiss, factors = 2, verbose = TRUE,

+ a0 = 1, b0 = 0.15, burnin = 5000, mcmc = 50000)

Checking for convergence before summarizing the estimates:

> algor <- try(geweke.diag(z.out$coefficients), silent = T)

> if (class(algor) == "try-error") print(algor)

Since the algorithm did not converge, we now add some constraints on Λ.
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2. Putting Constraints on Λ
Put constraints on Lambda to optimize the algorithm:

> z.out <- zelig(cbind(Agr, Exam, Educ, Cath, InfMort) ~ NULL,

+ model = "factor.bayes", data = swiss, factors = 2, lambda.constraints = list(Exam = list(1,

+ "+"), Exam = list(2, "-"), Educ = c(2, 0), InfMort = c(1,

+ 0)), verbose = TRUE, a0 = 1, b0 = 0.15, burnin = 5000,

+ mcmc = 50000)

> geweke.diag(z.out$coefficients)

> heidel.diag(z.out$coefficients)

> raftery.diag(z.out$coefficients)

> summary(z.out)

Model

Suppose for observation i we observe K variables and hypothesize that there are d underlying
factors such that:

Yi = Λφi + εi

where Yi is the vector of K manifest variables for observation i. Λ is the K×d factor loading
matrix and φi is the d-vector of latent factor scores. Both Λ and φ need to be estimated.

� The stochastic component is given by:

εi ∼ Normal(0,Ψ).

where Ψ is a diagonal, positive definite matrix. The diagonal elements of Ψ are referred
to as uniquenesses.

� The systematic component is given by

µi = E(Yi) = Λφi

� The independent conjugate prior for each Λij is given by

Λij ∼ Normal(l0ij
, L−1

0ij
) for i = 1, . . . , k; j = 1, . . . , d.

� The independent conjugate prior for each Ψii is given by

Ψii ∼ InverseGamma(
a0

2
,
b0
2

), for i = 1, . . . , k.

� The prior for φi is

φi ∼ Normal(0, Id), for i = 1, . . . , n.

where Id is a d× d identity matrix.
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Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(cbind(Y1, Y2, Y3), model = "factor.bayes", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated factor
loadings and the uniquenesses. If store.scores = TRUE, the estimated factors
scores are also contained in coefficients.

– data: the name of the input data frame.

– seed: the random seed used in the model.

� Since there are no explanatory variables, the sim() procedure is not applicable for
factor analysis models.

How to Cite

To cite the factor.bayes Zelig model:

Ben Goodrich and Ying Lu. 2007. ”factor.bayes: Bayesian Factor Analysis”
in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s Statistical
Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.
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12.13 factor.mix: Mixed Data Factor Analysis

Mixed data factor analysis takes both continuous and ordinal dependent variables and esti-
mates a model for a given number of latent factors. The model is estimated using a Markov
Chain Monte Carlo algorithm (Gibbs sampler with data augmentation). Alternative models
include Bayesian factor analysis for continuous variables (Section 12.12) and Bayesian factor
analysis for ordinal variables (Section 12.14).

Syntax

> z.out <- zelig(cbind(Y1 ,Y2, Y3) ~ NULL, factors = 1,

model = "factor.mix", data = mydata)

Inputs

zelig() accepts the following arguments for factor.mix:

� Y1, Y2, Y3, ...: The dependent variables of interest, which can be a mix of ordinal
and continuous variables. You must have more dependent variables than factors.

� factors: The number of the factors to be fitted.

Additional Inputs

The model accepts the following additional arguments to monitor convergence:

� lambda.constraints: A list that contains the equality or inequality constraints on
the factor loadings.

– varname = list(): by default, no constraints are imposed.

– varname = list(d, c): constrains the dth loading for the variable named varname

to be equal to c.

– varname = list(d, "+"): constrains the dth loading for the variable named
varname to be positive;

– varname = list(d, "-"): constrains the dth loading for the variable named
varname to be negative.

Unlike Bayesian factor analysis for continuous variables (Section 12.12), the first col-
umn of Λ corresponds to negative item difficulty parameters and should not be con-
strained in general.
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� std.mean: defaults to TRUE, which rescales the continuous manifest variables to have
mean 0.

� std.var: defaults to TRUE. which rescales the continuous manifest variables to have
unit variance.

factor.mix accepts the following additional arguments to monitor the sampling scheme for
the Markov chain:

� burnin: number of the initial MCMC iterations to be discarded. The default value is
1,000.

� mcmc: number of the MCMC iterations after burnin. The default value is 20,000.

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� tune: tuning parameter, which can be either a scalar or a vector of length K. The
value of the tuning parameter must be positive. The default value is 1.2.

� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen. The default is FALSE.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed 12345.

� lambda.start: starting values of the factor loading matrix Λ for the Markov chain,
either a scalar (starting values of the unconstrained loadings will be set to that value),
or a matrix with compatible dimensions. The default is NA, where the start values for
the first column of Λ are set based on the observed pattern, while for the rest of the
columns of Λ, the start values are set to be 0 for unconstrained factor loadings, and 1
or −1 for constrained factor loadings (depending on the nature of the constraints).

� psi.start: starting values for the diagonals of the error variance (uniquenesses) ma-
trix. Since the starting values for the ordinal variables are constrained to 1 (to identify
the model), you may only specify the starting values for the continuous variables. For
the continuous variables, you may specify psi.start as a scalar or a vector with length
equal to the number of continuous variables. If a scalar, that starting value is recycled
for all continuous variables. If a vector, the starting values should correspond to each
of the continuous variables. The default value is NA, which means the starting values
of all the continuous variable uniqueness are set to 0.5.

� store.lambda: defaults to TRUE, storing the posterior draws of the factor loadings.
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� store.scores: defaults to FALSE. If TRUE, the posterior draws of the factor scores are
stored. (Storing factor scores may take large amount of memory for a a large number
of draws or observations.)

Use the following additional arguments to specify prior parameters used in the model:

� l0: mean of the Normal prior for the factor loadings, either a scalar or a matrix with
the same dimensions as Λ. If a scalar value, then that value will be the prior mean for
all the factor loadings. The default value is 0.

� L0: precision parameter of Normal prior for the factor loadings, either a scalar or a
matrix with the same dimensions as Λ. If a scalar value, then the precision matrix will
be a diagonal matrix with the diagonal elements set to that value. The default value
is 0 which leads to an improper prior.

� a0: a0/2 is the shape parameter of the Inverse Gamma priors for the uniquenesses. It
can take a scalar value or a vector. The default value is 0.001.

� b0: b0/2 is the shape parameter of the Inverse Gamma priors for the uniquenesses. It
can take a scalar value or a vector. The default value is 0.001.

Zelig users may wish to refer to help(MCMCmixfactanal) for more information.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.
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Examples

1. Basic Example
Attaching the sample dataset:

> data(PErisk)

Factor analysis for mixed data using factor.mix:

> z.out <- zelig(cbind(courts, barb2, prsexp2, prscorr2, gdpw2) ~

+ NULL, data = PErisk, model = "factor.mix", factors = 1, burnin = 5000,

+ mcmc = 1e+05, thin = 50, verbose = TRUE, L0 = 0.25, tune = 1.2)

Checking for convergence before summarizing the estimates:

> geweke.diag(z.out$coefficients)

> heidel.diag(z.out$coefficients)

> summary(z.out)

Model

Let Yi be a K-vector of observed variables for observation i, The kth variable can be either
continuous or ordinal. When Yik is an ordinal variable, it takes value from 1 to Jk for
k = 1, . . . , K and for i = 1, . . . , n. The distribution of Yik is assumed to be governed by
another K-vector of unobserved continuous variable Y ∗

ik. There are d underlying factors.
When Yik is continuous, we let Y ∗

ik = Yik.

� The stochastic component is described in terms of Y ∗
i :

Y ∗
i ∼ NormalK(µi, IK),

where Y ∗
i = (Y ∗

i1, . . . , Y
∗
iK), and µi = (µi1, . . . , µiK).

For ordinal Yik,

Yik = j if γ(j−1),k ≤ Y ∗
ik ≤ γjk for j = 1, . . . , Jk; k = 1, . . . , K.

where γjk, j = 0, . . . , J are the threshold parameters for the kth variable with the
following constraints, γlk < γmk for l < m, and γ0k = −∞, γJkk = ∞ for any k =
1, . . . , K. It follows that the probability of observing Yik belonging to category j is,

Pr(Yik = j) = Φ(γjk | µik)− Φ(γ(j−1),k | µik) for j = 1, . . . , Jk

where Φ(· | µik) is the cumulative distribution function of the Normal distribution with
mean µik and variance 1.
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� The systematic component is given by,

µi = Λφi,

where Λ is a K×d matrix of factor loadings for each variable, φi is a d-vector of factor
scores for observation i. Note both Λ and φ are estimated..

� The independent conjugate prior for each Λij is given by

Λij ∼ Normal(l0ij
, L−1

0ij
) for i = 1, . . . , k; j = 1, . . . , d.

� The prior for φi is,

φi ∼ Normal(0, Id−1), for i = 2, . . . , n.

where Id−1 is a (d− 1)× (d− 1) identity matrix. Note the first element of φi is 1.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(cbind(Y1, Y2, Y3), model = "factor.mix", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated factor
loadings, the estimated cut points γ for each variable. Note the first element of γ
is normalized to be 0. If store.scores = TRUE, the estimated factors scores are
also contained in coefficients.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

� Since there are no explanatory variables, the sim() procedure is not applicable for
factor analysis models.
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How to Cite

To cite the factor.mix Zelig model:

Ben Goodrich and Ying Lu. 2007. ”factor.mix: Mixed Data Factor Analysis”
in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s Statistical
Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.
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12.14 factor.ord: Ordinal Data Factor Analysis

Given some unobserved explanatory variables and observed ordinal dependent variables, this
model estimates latent factors using a Gibbs sampler with data augmentation. For factor
analysis for continuous data, see Section 12.12. For factor analysis for mixed data (including
both continuous and ordinal variables), see Section 12.13.

Syntax

> z.out <- zelig(cbind(Y1 ,Y2, Y3) ~ NULL, factors = 1,

model = "factor.ord", data = mydata)

Inputs

zelig() accepts the following arguments for factor.ord: :

� Y1, Y2, and Y3: variables of interest in factor analysis (manifest variables), assumed
to be ordinal variables. The number of manifest variables must be greater than the
number of the factors.

� factors: number of the factors to be fitted (defaults to 1).

Additional Inputs

In addition, zelig() accepts the following arguments for model specification:

� lambda.constraints: list that contains the equality or inequality constraints on the
factor loadings. A typical entry in the list has one of the following forms:

– varname = list(): by default, no constraints are imposed.

– varname = list(d, c): constrains the dth loading for the variable named varname

to be equal to c;

– varname = list(d, "+"): constrains the dth loading for the variable named
varname to be positive;

– varname = list(d, "-"): constrains the dth loading for the variable named
varname to be negative.

The first column of Λ should not be constrained in general.

� drop.constantvars: defaults to TRUE, dropping the manifest variables that have no
variation before fitting the model.

The model accepts the following arguments to monitor the convergence of the Markov
chain:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).
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� mcmc: number of the MCMC iterations after burnin (defaults to 20,000).

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� tune: tuning parameter for Metropolis-Hasting sampling, either a scalar or a vector of
length K. The value of the tuning parameter must be positive. The default value is
1.2.

� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed 12345.

� Lambda.start: starting values of the factor loading matrix Λ for the Markov chain,
either a scalar (all unconstrained loadings are set to that value), or a matrix with
compatible dimensions. The default is NA, such that the start values for the first
column are set based on the observed pattern, while the remaining columns have start
values set to 0 for unconstrained factor loadings, and -1 or 1 for constrained loadings
(depending on the nature of the constraints).

� store.lambda: defaults to TRUE, which stores the posterior draws of the factor loadings.

� store.scores: defaults to FALSE. If TRUE, stores the posterior draws of the factor
scores. (Storing factor scores may take large amount of memory for a a large number
of draws or observations.)

Use the following parameters to specify the model’s priors:

� l0: mean of the Normal prior for the factor loadings, either a scalar or a matrix with
the same dimensions as Λ. If a scalar value, that value will be the prior mean for all
the factor loadings. Defaults to 0.

� L0: precision parameter of the Normal prior for the factor loadings, either a scalar or
a matrix with the same dimensions as Λ. If L0 takes a scalar value, then the precision
matrix will be a diagonal matrix with the diagonal elements set to that value. The
default value is 0, which leads to an improper prior.

Zelig users may wish to refer to help(MCMCordfactanal) for more information.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:
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� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

Examples

1. Basic Example
Attaching the sample dataset:

> data(newpainters)

Factor analysis for ordinal data using factor.ord:

> z.out <- zelig(cbind(Composition, Drawing, Colour, Expression) ~

+ NULL, data = newpainters, model = "factor.ord", factors = 1,

+ L0 = 0.5, burin = 5000, mcmc = 30000, thin = 5, tune = 1.2,

+ verbose = TRUE)

Checking for convergence before summarizing the estimates:

> geweke.diag(z.out$coefficients)

> heidel.diag(z.out$coefficients)

> raftery.diag(z.out$coefficients)

> summary(z.out)
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Model

Let Yi be a vector of K observed ordinal variables for observation i, each ordinal variable k
for k = 1, . . . , K takes integer value j = 1, . . . , Jk. The distribution of Yi is assumed to be
governed by another k-vector of unobserved continuous variable Y ∗

i . There are d underlying
factors.

� The stochastic component is described in terms of the latent variable Y ∗
i :

Y ∗
i ∼ NormalK(µi, IK),

where Y ∗
i = (Y ∗

i1, . . . , Y
∗
iK), and µi is the mean vector for Y ∗

i , and µi = (µi1, . . . , µiK).

Instead of Y ∗
ik, we observe ordinal variable Yik,

Yik = j if γ(j−1),k ≤ Y ∗
ik ≤ γjk for j = 1, . . . , Jk, k = 1, . . . , K.

where γjk, j = 0, . . . , J are the threshold parameters for the kth variable with the
following constraints, γlk < γmk for l < m, and γ0k = −∞, γJkk = ∞ for any k =
1, . . . , K. It follows that the probability of observing Yik belonging to category j is,

Pr(Yik = j) = Φ(γjk | µik)− Φ(γ(j−1),k | µik) for j = 1, . . . , Jk

where Φ(· | µik) is the cumulative distribution function of the Normal distribution with
mean µik and variance 1.

� The systematic component is given by,

µi = Λφi,

where Λ is a K×d matrix of factor loadings for each variable, φi is a d-vector of factor
scores for observation i. Note both Λ and φ need to be estimated.

� The independent conjugate prior for each element of Λ, Λij is given by

Λij ∼ Normal(l0ij
, L−1

0ij
) for i = 1, . . . , k; j = 1, . . . , d.

� The prior for φi is,

φi(2:d) ∼ Normal(0, Id−1), for i = 2, . . . , n.

where Id−1 is a (d− 1)× (d− 1) identity matrix. Note the first element of φi is 1.
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Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(cbind(Y1, Y2, Y3), model = "factor.ord", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated factor
loadings, the estimated cut points γ for each variable. Note the first element of
γ is normalized to be 0. If store.scores=TRUE, the estimated factors scores are
also contained in coefficients.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

� Since there are no explanatory variables, the sim() procedure is not applicable for
factor analysis models.

How to Cite

To cite the factor.ord Zelig model:

Ben Goodrich and Ying Lu. 2007. ”factor.ord: Ordinal Data Factor Analysis”
in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s Statistical
Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.
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12.15 gamma: Gamma Regression for Continuous, Pos-

itive Dependent Variables

Use the gamma regression model if you have a positive-valued dependent variable such as
the number of years a parliamentary cabinet endures, or the seconds you can stay airborne
while jumping. The gamma distribution assumes that all waiting times are complete by the
end of the study (censoring is not allowed).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "gamma", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out, x1 = NULL)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for gamma
regression:

� robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard
errors via the sandwich package (see Zeileis (2004)). The default type of robust stan-
dard error is heteroskedastic and autocorrelation consistent (HAC), and assumes that
observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

* "vcovHAC": (default if robust = TRUE) HAC standard errors.

* "kernHAC": HAC standard errors using the weights given in Andrews (1991).

* "weave": HAC standard errors using the weights given in Lumley and Hea-
gerty (1999).

– order.by: defaults to NULL (the observations are chronologically ordered as in the
original data). Optionally, you may specify a vector of weights (either as order.by
= z, where z exists outside the data frame; or as order.by = ~z, where z is a
variable in the data frame). The observations are chronologically ordered by the
size of z.

– ...: additional options passed to the functions specified in method. See the
sandwich library and Zeileis (2004) for more options.

Example

Attach the sample data:

> data(coalition)
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Estimate the model:

> z.out <- zelig(duration ~ fract + numst2, model = "gamma", data = coalition)

View the regression output:

> summary(z.out)

Set the baseline values (with the ruling coalition in the minority) and the alternative values
(with the ruling coalition in the majority) for X:

> x.low <- setx(z.out, numst2 = 0)

> x.high <- setx(z.out, numst2 = 1)

Simulate expected values (qi$ev) and first differences (qi$fd):

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

> plot(s.out)
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Model

� The Gamma distribution with scale parameter α has a stochastic component :

Y ∼ Gamma(yi | λi, α)

f(y) =
1

αλi Γλi

yλi−1
i exp−

{yi

α

}
for α, λi, yi > 0.

� The systematic component is given by

λi =
1

xiβ

Quantities of Interest

� The expected values (qi$ev) are simulations of the mean of the stochastic component
given draws of α and β from their posteriors:

E(Y ) = αλi.

� The predicted values (qi$pr) are draws from the gamma distribution for each given
set of parameters (α, λi).

� If x1 is specified, sim() also returns the differences in the expected values (qi$fd),

E(Y | x1)− E(Y | x)

.

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.
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� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "gamma", data), then you may exam-
ine the available information in z.out by using names(z.out), see the coefficients by us-
ing z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: the vector of fitted values.

– linear.predictors: the vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

215



– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from a distribution defined by
(α, λi).

– qi$fd: the simulated first difference in the expected values for the specified values
in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the gamma Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”gamma: Gamma Regression for
Continuous, Positive Dependent Variables” in Kosuke Imai, Gary King, and
Olivia Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.
edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The gamma model is part of the stats package by Venables and Ripley (2002). Advanced
users may wish to refer to help(glm) and help(family), as well as McCullagh and Nelder
(1989). Robust standard errors are implemented via the sandwich package by Zeileis (2004).
Sample data are from King et al. (2000).
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12.16 gamma.gee: Generalized Estimating Equation for

Gamma Regression

The GEE gamma is similar to standard gamma regression (appropriate when you have an
uncensored, positive-valued, continuous dependent variable such as the time until a parlia-
mentary cabinet falls). Unlike in gamma regression, GEE gamma allows for dependence
within clusters, such as in longitudinal data, although its use is not limited to just panel
data. GEE models make no distributional assumptions but require three specifications: a
mean function, a variance function, and a“working”correlation matrix for the clusters, which
models the dependence of each observation with other observations in the same cluster. The
“working” correlation matrix is a T × T matrix of correlations, where T is the size of the
largest cluster and the elements of the matrix are correlations between within-cluster obser-
vations. The appeal of GEE models is that it gives consistent estimates of the parameters
and consistent estimates of the standard errors can be obtained using a robust “sandwich”
estimator even if the “working” correlation matrix is incorrectly specified. If the “working”
correlation matrix is correctly specified, GEE models will give more efficient estimates of the
parameters. GEE models measure population-averaged effects as opposed to cluster-specific
effects (See Zorn (2001)).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "gamma.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted by id and
should be ordered within each cluster when appropriate.

Additional Inputs

� robust: defaults to TRUE. If TRUE, consistent standard errors are estimated using a
“sandwich” estimator.

Use the following arguments to specify the structure of the “working” correlations within
clusters:

� corstr: defaults to "independence". It can take on the following arguments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′ with t 6= t′.
It assumes that there is no correlation within the clusters and the model becomes
equivalent to standard gamma regression. The“working” correlation matrix is the
identity matrix.
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– Fixed (corstr = "fixed"): If selected, the user must define the “working” cor-
relation matrix with the R argument rather than estimating it from the model.

– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. Choose this option when the correlations are
assumed to be the same for observations of the same |t − t′| periods apart for
|t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. This option relaxes the assumption that the
correlations are the same for all observations of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence (Mv=2)
1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′ with t 6= t′.

Choose this option if the correlations are assumed to be the same for all observa-
tions within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


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– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr = "AR-M"),
you must also specify Mv = m, where m is the number of periods t of de-
pendence. For example, the first order autoregressive model (AR-1) implies
cor(yit, yit′) = α|t−t′|,∀t, t′ with t 6= t′. In AR-1, observation 1 and observation 2
have a correlation of α. Observation 2 and observation 3 also have a correlation
of α. Observation 1 and observation 3 have a correlation of α2, which is a func-
tion of how 1 and 2 are correlated (α) multiplied by how 2 and 3 are correlated
(α). Observation 1 and 4 have a correlation that is a function of the correlation
between 1 and 2, 2 and 3, and 3 and 4, and so forth.

Sample “working” correlation for Stationary AR-1 (Mv=1)
1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′ with t 6= t′.

No constraints are placed on the correlations, which are then estimated from the
data.

� Mv: defaults to 1. It specifies the number of periods of correlation and only needs to
be specified when corstr is "stat_M_dep", "non_stat_M_dep", or "AR-M".

� R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating
it from the data. The argument is used only when corstr is "fixed". The input is a
T × T matrix of correlations, where T is the size of the largest cluster.

Examples

1. Example with Exchangeable Dependence

Attaching the sample turnout dataset:

> data(coalition)

Sorted variable identifying clusters

> coalition$cluster <- c(rep(c(1:62), 5), rep(c(63), 4))

> sorted.coalition <- coalition[order(coalition$cluster), ]

Estimating model and presenting summary:

> z.out <- zelig(duration ~ fract + numst2, model = "gamma.gee",

+ id = "cluster", data = sorted.coalition, robust = TRUE, corstr = "exchangeable")

> summary(z.out)
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Setting the explanatory variables at their default values (mode for factor variables and
mean for non-factor variables), with numst2 set to the vector 0 = no crisis, 1 = crisis.

> x.low <- setx(z.out, numst2 = 0)

> x.high <- setx(z.out, numst2 = 1)

Simulate quantities of interest

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

Generate a plot of quantities of interest:

> plot(s.out)
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The Model

Suppose we have a panel dataset, with Yit denoting the positive-valued, continuous depen-
dent variable for unit i at time t. Yi is a vector or cluster of correlated data where yit is
correlated with yit′ for some or all t, t′. Note that the model assumes correlations within i
but independence across i.

� The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | λi)

Yit ∼ g(yit | λit)

where f and g are unspecified distributions with means λi and λit. GEE models make
no distributional assumptions and only require three specifications: a mean function,
a variance function, and a correlation structure.

� The systematic component is the mean function, given by:

λit =
1

xitβ

where xit is the vector of k explanatory variables for unit i at time t and β is the vector
of coefficients.

� The variance function is given by:

Vit = λ2
it =

1

(xitβ)2

� The correlation structure is defined by a T × T “working” correlation matrix, where
T is the size of the largest cluster. Users must specify the structure of the “working”
correlation matrix a priori. The “working” correlation matrix then enters the variance
term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = λ2
it as the tth

diagonal element, Ri(α) is the“working”correlation matrix, and φ is a scale parameter.
The parameters are then estimated via a quasi-likelihood approach.

� In GEE models, if the mean is correctly specified, but the variance and correlation
structure are incorrectly specified, then GEE models provide consistent estimates of
the parameters and thus the mean function as well, while consistent estimates of the
standard errors can be obtained via a robust “sandwich” estimator. Similarly, if the
mean and variance are correctly specified but the correlation structure is incorrectly
specified, the parameters can be estimated consistently and the standard errors can be
estimated consistently with the sandwich estimator. If all three are specified correctly,
then the estimates of the parameters are more efficient.
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� The robust“sandwich”estimator gives consistent estimates of the standard errors when
the correlations are specified incorrectly only if the number of units i is relatively large
and the number of repeated periods t is relatively small. Otherwise, one should use
the “näıve” model-based standard errors, which assume that the specified correlations
are close approximations to the true underlying correlations. See ? for more details.

Quantities of Interest

� All quantities of interest are for marginal means rather than joint means.

� The method of bootstrapping generally should not be used in GEE models. If you
must bootstrap, bootstrapping should be done within clusters, which is not currently
supported in Zelig. For conditional prediction models, data should be matched within
clusters.

� The expected values (qi$ev) for the GEE gamma model is the mean:

E(Y ) = λc =
1

xcβ
,

given draws of β from its sampling distribution, where xc is a vector of values, one for
each independent variable, chosen by the user.

� The first difference (qi$fd) for the GEE gamma model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1) and control
(trit = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yit(trit = 0)], the counterfactual expected value of Yit for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to trit = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "gamma.gee", id, data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.
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� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic component.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and z-statistics.

– working.correlation: the “working” correlation matrix

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values
specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How To Cite

To cite the gamma.gee Zelig model:

Patrick Lam. 2007. ”gamma.gee: General Estimating Equation for Gamma
Regression” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The gee function is part of the gee package by Vincent J. Carey, ported to R by Thomas Lum-
ley and Brian Ripley. Advanced users may wish to refer to help(gee) and help(family).
Sample data are from King et al. (1990).
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12.17 gamma.mixed: Mixed effects gamma regression

Use generalized multi-level linear regression if you have covariates that are grouped accord-
ing to one or more classification factors. Gamma regression models a continuous, positive
dependent variable.

While generally called multi-level models in the social sciences, this class of models is often
referred to as mixed-effects models in the statistics literature and as hierarchical models in a
Bayesian setting. This general class of models consists of linear models that are expressed as
a function of both fixed effects, parameters corresponding to an entire population or certain
repeatable levels of experimental factors, and random effects, parameters corresponding to
individual experimental units drawn at random from a population.

Syntax

z.out <- zelig(formula= y ~ x1 + x2 + tag(z1 + z2 | g),

data=mydata, model="gamma.mixed")

z.out <- zelig(formula= list(mu=y ~ xl + x2 + tag(z1, delta | g),

delta= ~ tag(w1 + w2 | g)), data=mydata, model="gamma.mixed")

Inputs

zelig() takes the following arguments for mixed:

� formula: a two-sided linear formula object describing the systematic component of
the model, with the response on the left of a ˜ operator and the fixed effects terms,
separated by + operators, on the right. Any random effects terms are included with
the notation tag(z1 + ... + zn | g) with z1 + ... + zn specifying the model
for the random effects and g the grouping structure. Random intercept terms are
included with the notation tag(1 | g).
Alternatively, formula may be a list where the first entry, mu, is a two-sided linear
formula object describing the systematic component of the model, with the repsonse
on the left of a˜operator and the fixed effects terms, separated by + operators, on the
right. Any random effects terms are included with the notation tag(z1, delta | g)

with z1 specifying the individual level model for the random effects, g the grouping
structure and delta references the second equation in the list. The delta equation is
one-sided linear formula object with the group level model for the random effects on
the right side of a˜operator. The model is specified with the notation tag(w1 + ...

+ wn | g) with w1 + ... + wn specifying the group level model and g the grouping
structure.

Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:

224



� data: An optional data frame containing the variables named in formula. By default,
the variables are taken from the environment from which zelig() is called.

� method: a character string. The criterion is always the log-likelihood but this crite-
rion does not have a closed form expression and must be approximated. The default
approximation is "PQL" or penalized quasi-likelihood. Alternatives are "Laplace" or
"AGQ" indicating the Laplacian and adaptive Gaussian quadrature approximations re-
spectively.

� na.action: A function that indicates what should happen when the data contain NAs.
The default action (na.fail) causes zelig() to print an error message and terminate
if there are any incomplete observations.

Additionally, users may with to refer to lmer in the package lme4 for more information,
including control parameters for the estimation algorithm and their defaults.

Examples

1. Basic Example with First Differences

Attach sample data:

> data(coalition2)

Estimate model using optional arguments to specify approximation method for the
log-likelihood, and the log link function for the Gamma family:

> z.out1 <- zelig(duration ~ invest + fract + polar + numst2 +

+ crisis + tag(1 | country), data = coalition2, model = "gamma.mixed",

+ method = "PQL", family = Gamma(link = log))

Summarize regression coefficients and estimated variance of random effects:

> summary(z.out1)

Set the baseline values (with the ruling coalition in the minority) and the alternative
values (with the ruling coalition in the majority) for X:

> x.high <- setx(z.out1, numst2 = 1)

> x.low <- setx(z.out1, numst2 = 0)

Simulate expected values (qi$ev) and first differences(qi$fd):
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> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

Mixed effects gamma regression Model

Let Yij be the continuous, positive dependent variable, realized for observation j in group i
as yij, for i = 1, . . . ,M , j = 1, . . . , ni.

� The stochastic component is described by a Gamma model with scale parameter α.

Yij ∼ Gamma(yij|λij, α)

where

Gamma(yij|λij, α) =
1

αλijΓλij

y
λij−1
ij exp(−{yij

α
})

for α, λij, yij > 0.

� The q-dimensional vector of random effects, bi, is restricted to be mean zero, and
therefore is completely characterized by the variance covarance matrix Ψ, a (q × q)
symmetric positive semi-definite matrix.

bi ∼ Normal(0,Ψ)

� The systematic component is

λij ≡
1

Xijβ + Zijbi

where Xij is the (ni × p ×M) array of known fixed effects explanatory variables, β
is the p-dimensional vector of fixed effects coefficients, Zij is the (ni × q ×M) array
of known random effects explanatory variables and bi is the q-dimensional vector of
random effects.

Quantities of Interest

� The predicted values (qi$pr) are draws from the gamma distribution for each given
set of parameters (α, λij), for

λij =
1

Xijβ + Zijbi

given Xij and Zij and simulations of of β and bi from their posterior distributions.
The estimated variance covariance matrices are taken as correct and are themselves
not simulated.
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� The expected values (qi$ev) are simulations of the mean of the stochastic component
given draws of α, β from their posteriors:

E(Yij|Xij) = αλij =
α

Xijβ
.

� The first difference (qi$fd) is given by the difference in expected values, conditional
on Xij and X ′

ij, representing different values of the explanatory variables.

FD(Yij|Xij, X
′
ij) = E(Yij|Xij)− E(Yij|X ′

ij)

� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− ̂Yij(tij = 0)},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control
(tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
Yij(tij = 0), the counterfactual predicted value of Yij for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to tij = 0.

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− E[Yij(tij = 0)]},

where tij is a binary explanatory variable defining the treatment (tij = 1) and con-
trol (tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
E[Yij(tij = 0)], the counterfactual expected value of Yij for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to tij = 0.

Output Values

The output of each Zelig command contains useful information which you may view. You
may examine the available information in z.out by using slotNames(z.out), see the fixed
effect coefficients by using summary(z.out)@coefs, and a default summary of information
through summary(z.out). Other elements available through the operator are listed below.

� From the zelig() output stored in summary(z.out), you may extract:

– fixef: numeric vector containing the conditional estimates of the fixed effects.
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– ranef: numeric vector containing the conditional modes of the random effects.

– frame: the model frame for the model.

� From the sim() output stored in s.out, you may extract quantities of interest stored
in a data frame:

– qi$pr: the simulated predicted values drawn from the distributions defined by
the expected values.

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences in the expected values for the values specified
in x and x1.

– qi$ate.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

– qi$ate.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the gamma.mixed Zelig model:

Delia Bailey and Ferdinand Alimadhi. 2007. ”gamma.mixed: Mixed effects
gamma model” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Mixed effects gamma regression is part of lme4 package by Douglas M. Bates (Bates 2007).
For a detailed discussion of mixed-effects models, please see ?
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12.18 gamma.net: Network Gamma Regression for Con-

tinuous, Positive Proximity Matrix Dependent

Variables

Use the network gamma regression model if you have a positive-valued dependent variable
that is a binary valued proximity matrix (a.k.a. sociomatricies, adjacency matrices, or matrix
representations of directed graphs). The gamma distribution assumes that all waiting times
are complete by the end of the study (censoring is not allowed).

Syntax

> z.out <- zelig(y ~ x1 + x2, model = "gamma.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for network
gamma regression:

� LF: specifies the link function to be used for the network gamma regression. Default is
LF="inverse", but LF can also be set to "identity" or "log" by the user.

Examples

1. Basic Example

Load the sample data (see ?friendship for details on the structure of the network
dataframe):

> data(friendship)

Estimate model:

> z.out <- zelig(per ~ perpower, LF = "inverse", model = "gamma.net",

+ data = friendship)

> summary(z.out)

Setting values for the explanatory variables to their default values:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution.
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> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)
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2. Simulating First Differences

> x.low <- setx(z.out, numst2 = 0)

> x.high <- setx(z.out, numst2 = 1)

> s.out2 <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out2)

> plot(s.out2)

1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

Expected Values: E(Y|X)

D
en

si
ty

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

Predicted Values: Y|X

D
en

si
ty

230



Model

The gamma.net model performs a gamma regression of the proximity matrix Y, a m × m
matrix representing network ties, on a set of proximity matrices X. This network regression
model is directly analogous to standard gamma regression element-wise on the appropriately
vectorized matrices. Proximity matrices are vectorized by creating Y , a m2 × 1 vector to
represent the proximity matrix. The vectorization which produces the Y vector from the Y
matrix is performed by simple row-concatenation of Y. For example, if Y is a 15×15 matrix,
the Y1,1 element is the first element of Y , and the Y2,1 element is the second element of Y
and so on. Once the input matrices are vectorized, standard gamma regression is performed.

Let Yi be the dependent variable, produced by vectorizing a binary proximity matrix, for
observation i.

� The Gamma distribution with scale parameter α has a stochastic component given by

Y ∼ Gamma(yi|λi, α)

f(y) = 1
αλiΓλi

yλi−1
i exp−

[
yi

α

]
for α, λi, yi > 0.

� The systematic component is given by:

λi =
1

xiβ
.

Quantities of Interest

The quantities of interest for the network gamma regression are the same as those for the
standard gamma regression.

� The expected values (qi$ev) are simulations of the mean of the stochastic component
given draws of α and β from their posteriors:

E(Y ) = αiλ.

� The predicted values (qi$pr) are draws from the gamma distribution for each set of
parameters (α, λi).

� The first difference (qi$fd) for the network gamma model is defined as

FD = Pr(Y |x1)− Pr(Y |x)
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Output Values

The output of each Zelig command contains useful information which you may view. For
example, you run z.out <- zelig(y ~ x, model = "gamma.net", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by us-
ing z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaikeś Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– bic: the Bayesian Information Criterion (minus twice the maximized log-likelihood
plus the number of coefficients times log n).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE

� From summary(z.out)(as well as from zelig()), you may extract:

– mod.coefficients: the parameter estimates with their associated standard er-
rors, p-values, and t statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values drawn from a distribution defined by
(αi, λ).

– qi$fd: the simulated first differences in the expected probabilities simulated from
x and x1.
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How to Cite

To cite the gamma.net Zelig model:

Skyler J. Cranmer. 2007. ”gamma.net: Social Network Gamma Regression for
Continuous, Positive Dependent Variables” in Kosuke Imai, Gary King, and
Olivia Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.
edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The network gamma regression is part of the netglm package by Skyler J. Cranmer and
is built using some of the functionality of the sna package by Carter T. Butts (Butts and
Carley 2001).In addition, advanced users may wish to refer to help(gamma.net). Sample
data are fictional.
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12.19 gamma.survey: Survey-Weighted Gamma Regres-

sion for Continuous, Positive Dependent Vari-

ables

The survey-weighted Gamma regression model is appropriate for survey data obtained using
complex sampling techniques, such as stratified random or cluster sampling (e.g., not simple
random sampling). Like the conventional Gamma regression models (see Section 12.15),
survey-weighted Gamma regression specifies a continuous, positive dependent variable as
function of a set of explanatory variables. The survey-weighted Gamma model reports esti-
mates of model parameters identical to conventional Gamma estimates, but uses information
from the survey design to correct variance estimates.

The gamma.survey model accommodates three common types of complex survey data.
Each method listed here requires selecting specific options which are detailed in the “Addi-
tional Inputs” section below.

1. Survey weights: Survey data are often published along with weights for each obser-
vation. For example, if a survey intentionally over-samples a particular type of case,
weights can be used to correct for the over-representation of that type of case in the
dataset. Survey weights come in two forms:

(a) Probability weights report the probability that each case is drawn from the popu-
lation. For each stratum or cluster, this is computed as the number of observations
in the sample drawn from that group divided by the number of observations in
the population in the group.

(b) Sampling weights are the inverse of the probability weights.

2. Strata/cluster identification: A complex survey dataset may include variables that
identify the strata or cluster from which observations are drawn. For stratified random
sampling designs, observations may be nested in different strata. There are two ways
to employ these identifiers:

(a) Use finite population corrections to specify the total number of cases in the stra-
tum or cluster from which each observation was drawn.

(b) For stratified random sampling designs, use the raw strata ids to compute sam-
pling weights from the data.

3. Replication weights: To preserve the anonymity of survey participants, some sur-
veys exclude strata and cluster ids from the public data and instead release only pre-
computed replicate weights.
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Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "gamma.survey", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard zelig inputs (see Section ??), survey-weighted Gamma models
accept the following optional inputs:

1. Datasets that include survey weights:.

� probs: An optional formula or numerical vector specifying each case’s probability
weight, the probability that the case was selected. Probability weights need not
(and, in most cases, will not) sum to one. Cases with lower probability weights
are weighted more heavily in the computation of model coefficients.

� weights: An optional numerical vector specifying each case’s sample weight, the
inverse of the probability that the case was selected. Sampling weights need not
(and, in most cases, will not) sum to one. Cases with higher sampling weights are
weighted more heavily in the computation of model coefficients.

2. Datasets that include strata/cluster identifiers:

� ids: An optional formula or numerical vector identifying the cluster from which
each observation was drawn (ordered from largest level to smallest level). For
survey designs that do not involve cluster sampling, ids defaults to NULL.

� fpc: An optional numerical vector identifying each case’s frequency weight, the
total number of units in the population from which each observation was sampled.

� strata: An optional formula or vector identifying the stratum from which each
observation was sampled. Entries may be numerical, logical, or strings. For survey
designs that do not involve cluster sampling, strata defaults to NULL.

� nest: An optional logical value specifying whether primary sampling unites (PSUs)
have non-unique ids across multiple strata. nest=TRUE is appropriate when PSUs
reuse the same identifiers across strata. Otherwise, nest defaults to FALSE.

� check.strata: An optional input specifying whether to check that clusters are
nested in strata. If check.strata is left at its default, !nest, the check is not
performed. If check.strata is specified as TRUE, the check is carried out.

3. Datasets that include replication weights:
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� repweights: A formula or matrix specifying replication weights, numerical vec-
tors of weights used in a process in which the sample is repeatedly re-weighted
and parameters are re-estimated in order to compute the variance of the model
parameters.

� type: A string specifying the type of replication weights being used. This input
is required if replicate weights are specified. The following types of replication
weights are recognized: "BRR", "Fay", "JK1", "JKn", "bootstrap", or "other".

� weights: An optional vector or formula specifying each case’s sample weight, the
inverse of the probability that the case was selected. If a survey includes both
sampling weights and replicate weights separately for the same survey, both should
be included in the model specification. In these cases, sampling weights are used
to correct potential biases in in the computation of coefficients and replication
weights are used to compute the variance of coefficient estimates.

� combined.weights: An optional logical value that should be specified as TRUE if
the replicate weights include the sampling weights. Otherwise, combined.weights
defaults to FALSE.

� rho: An optional numerical value specifying a shrinkage factor for replicate weights
of type "Fay".

� bootstrap.average: An optional numerical input specifying the number of it-
erations over which replicate weights of type "bootstrap" were averaged. This
input should be left as NULL for "bootstrap" weights that were not were created
by averaging.

� scale: When replicate weights are included, the variance is computed as the sum
of squared deviations of the replicates from their mean. scale is an optional
overall multiplier for the standard deviations.

� rscale: Like scale, rscale specifies an optional vector of replicate-specific mul-
tipliers for the squared deviations used in variance computation.

� fpc: For models in which "JK1", "JKn", or "other" replicates are specified, fpc
is an optional numerical vector (with one entry for each replicate) designating the
replicates’ finite population corrections.

� fpctype: When a finite population correction is included as an fpc input, fpctype
is a required input specifying whether the input to fpc is a sampling fraction
(fpctype="fraction") or a direct correction (fpctype="correction").

� return.replicates: An optional logical value specifying whether the replicates
should be returned as a component of the output. return.replicates defaults
to FALSE.

Examples

1. A dataset that includes survey weights:
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Attach the sample data:

> data(api, package = "survey")

Suppose that a dataset included a positive and continuous measure of public schools’
performance (api00), a measure of the percentage of students at each school who
receive subsidized meals (meals), an indicator for whether each school holds classes year
round (year.rnd), and sampling weights computed by the survey house (pw). Estimate
a model that regresses school performance on the meals and year.rnd variables:

> z.out1 <- zelig(api00 ~ meals + yr.rnd, model = "gamma.survey",

+ weights = ~pw, data = apistrat)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, and set a high (80th
percentile) and low (20th percentile) value for “meals”:

> x.low <- setx(z.out1, meals = quantile(apistrat$meals, 0.2))

> x.high <- setx(z.out1, meals = quantile(apistrat$meals, 0.8))

Generate first differences for the effect of high versus low concentrations of children
receiving subsidized meals on the probability of holding school year-round:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

Generate a visual summary of the quantities of interest:

> plot(s.out1)
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2. A dataset that includes strata/cluster identifiers:

Suppose that the survey house that provided the dataset used in the previous example
excluded sampling weights but made other details about the survey design available. A
user can still estimate a model without sampling weights that instead uses inputs that
identify the stratum and/or cluster to which each observation belongs and the size of
the finite population from which each observation was drawn.

Continuing the example above, suppose the survey house drew at random a fixed
number of elementary schools, a fixed number of middle schools, and a fixed number
of high schools. If the variable stype is a vector of characters ("E" for elementary
schools, "M" for middle schools, and "H" for high schools) that identifies the type of
school each case represents and fpc is a numerical vector that identifies for each case
the total number of schools of the same type in the population, then the user could
estimate the following model:

> z.out2 <- zelig(api00 ~ meals + yr.rnd, model = "gamma.survey",

+ strata = ~stype, fpc = ~fpc, data = apistrat)
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Summarize the regression output:

> summary(z.out2)

The coefficient estimates for this example are identical to the point estimates in the
first example, when pre-existing sampling weights were used. When sampling weights
are omitted, they are estimated automatically for "gamma.survey" models based on
the user-defined description of sampling designs.

Moreover, because the user provided information about the survey design, the standard
error estimates are lower in this example than in the previous example, in which the
user omitted variables pertaining to the details of the complex survey design.

3. A dataset that includes replication weights:

Survey houses sometimes supply replicate weights (in lieu of details about the survey
design). Suppose that the survey house that published these school data withheld
strata/cluster identifiers and instead published replication weights. For the sake of
illustrating how replicate weights can be used as inputs in gamma.survey models,
create a set of jack-knife (JK1) replicate weights:

> jk1reps <- jk1weights(psu = apistrat$dnum)

Again, estimate a model that regresses school performance on the meals and year.rnd

variables, using the JK1 replicate weights in jk1reps to compute standard errors:

> z.out3 <- zelig(api00 ~ meals + yr.rnd, model = "gamma.survey",

+ data = apistrat, repweights = jk1reps$weights, type = "JK1")

Summarize the regression coefficients:

> summary(z.out3)

Set the explanatory variable meals at its 20th and 80th quantiles:

> x.low <- setx(z.out3, meals = quantile(apistrat$meals, 0.2))

> x.high <- setx(z.out3, meals = quantile(apistrat$meals, 0.8))

Generate first differences for the effect of high versus low concentrations of poverty on
school performance:

> s.out3 <- sim(z.out3, x = x.high, x1 = x.low)

> summary(s.out3)

Generate a visual summary of quantities of interest:

> plot(s.out3)

239



530 540 550 560 570 580 590

0.
00

0.
02

0.
04

Expected Values: E(Y|X)

D
en

si
ty

400 500 600 700 800 900

0.
00

0
0.

00
2

0.
00

4
0.

00
6 Predicted Values: Y|X

D
en

si
ty

160 180 200 220

0.
00

0.
02

0.
04

First Differences in Expected Values: E(Y|X1)−E(Y|X)

D
en

si
ty

Model

� The Gamma distribution with scale parameter α has a stochastic component :

Y ∼ Gamma(yi | λi, α)

f(y) =
1

αλi Γλi

yλi−1
i exp−

{yi

α

}
for α, λi, yi > 0.

� The systematic component is given by

λi =
1

xiβ
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Variance

When replicate weights are not used, the variance of the coefficients is estimated as

Σ̂

[
n∑

i=1

(1− πi)

π2
i

(Xi(Yi − µi))
′(Xi(Yi − µi)) + 2

n∑
i=1

n∑
j=i+1

(πij − πiπj)

πiπjπij

(Xi(Yi − µi))
′(Xj(Yj − µj))

]
Σ̂

where πi is the probability of case i being sampled, Xi is a vector of the values of the
explanatory variables for case i, Yi is value of the dependent variable for case i, µ̂i is the
predicted value of the dependent variable for case i based on the linear model estimates,
and Σ̂ is the conventional variance-covariance matrix in a parametric glm. This statistic
is derived from the method for estimating the variance of sums described in Binder (1983)
and the Horvitz-Thompson estimator of the variance of a sum described in Horvitz and
Thompson (1952).

When replicate weights are used, the model is re-estimated for each set of replicate
weights, and the variance of each parameter is estimated by summing the squared deviations
of the replicates from their mean.

Quantities of Interest

� The expected values (qi$ev) are simulations of the mean of the stochastic component
given draws of α and β from their posteriors:

E(Y ) = αλi.

� The predicted values (qi$pr) are draws from the gamma distribution for each given
set of parameters (α, λi).

� If x1 is specified, sim() also returns the differences in the expected values (qi$fd),

E(Y | x1)− E(Y | x)

.

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.
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� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "gamma.survey", data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: the vector of fitted values.

– linear.predictors: the vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:
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– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from a distribution defined by
(α, λi).

– qi$fd: the simulated first difference in the expected values for the specified values
in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

When users estimate gamma.survey models with replicate weights in Zelig, an object
called .survey.prob.weights is created in the global environment. Zelig will over-write
any existing object with that name, and users are therefore advised to re-name any object
called .survey.prob.weights before using gamma.survey models in Zelig.

How to Cite

To cite the gamma.survey Zelig model:

Nicholas Carnes. 2008. ”gamma.survey: Survey-Weighted Gamma Regression for
Continuous, Positive Dependent Variables” in Kosuke Imai, Gary King, and
Olivia Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.
edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Survey-weighted linear models and the sample data used in the examples above are a part
of the survey package by Thomas Lumley. Users may wish to refer to the help files for
the three functions that Zelig draws upon when estimating survey-weighted models, namely,
help(svyglm), help(svydesign), and help(svrepdesign). The Gamma model is part of
the stats package by Venables and Ripley (2002). Advanced users may wish to refer to
help(glm) and help(family), as well as McCullagh and Nelder (1989).

afterpkgs, echo=FALSE = after<-search() torm<-setdiff(after,before) for (pkg in torm)
detach(pos=match(pkg,search())) @
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12.20 irt1d: One Dimensional Item Response Model

Given several observed dependent variables and an unobserved explanatory variable, item
response theory estimates the latent variable (ideal points). The model is estimated using
the Markov Chain Monte Carlo algorithm via a Gibbs sampler and data augmentation. Use
this model if you believe that the ideal points lie in one dimension, and see the k-dimensional
item response model (Section 12.21) for k hypothesized latent variables.

Syntax

> z.out <- zelig(cbind(Y1, Y2, Y3) ~ NULL, model = "irt1d", data = mydata)

Inputs

irt1d accepts the following argument:

� Y1, Y2, and Y3: Y1 contains the items for subject “Y1”, Y2 contains the items for
subject “Y2”, and so on.

Additional arguments

irt1d accepts the following additional arguments for model specification:

� theta.constraints: a list specifying possible equality or inequality constraints on the
ability parameters θ. A typical entry takes one of the following forms:

– varname = list(): by default, no constraints are imposed.

– varname = c: constrains the ability parameter for the subject named varname to
be equal to c.

– varname = "+": constrains the ability parameter for the subject named varname

to be positive.

– varname = "-": constrains the ability parameter for the subject named varname

to be negative.

The model also accepts the following arguments to monitor the sampling scheme for the
Markov chain:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).

� mcmc: number of the MCMC iterations after burnin (defaults to 20,000).

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.
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� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed 12345.

� theta.start: starting values for the subject abilities (ideal points), either a scalar or
a vector with length equal to the number of subjects. If a scalar, that value will be the
starting value for all subjects. The default is NA, which sets the starting values based
on an eigenvalue-eigenvector decomposition of the agreement score matrix formed from
the model response matrix (cbind(Y1, Y2, ...)).

� alpha.start: starting values for the difficulty parameters α, either a scalar or a vector
with length equal to the number of the items. If a scalar, the value will be the starting
value for all α. The default is NA, which sets the starting values based on a series of
probit regressions that condition on theta.start.

� beta.start: starting values for the β discrimination parameters, either a scalar or a
vector with length equal to the number of the items. If a scalar, the value will be the
starting value for all β. The default is NA, which sets the starting values based on a
series of probit regressions conditioning on theta.start.

� store.item: defaults to TRUE, storing the posterior draws of the item parameters.
(For a large number of draws or a large number observations, this may take a lot of
memory.)

� drop.constant.items: defaults to TRUE, dropping items with no variation before fit-
ting the model.

irt1d accepts the following additional arguments to specify prior parameters used in the
model:

� t0: prior mean of the subject abilities (ideal points). The default is 0.

� T0: prior precision of the subject abilities (ideal points). The default is 0.

� ab0: prior mean of (α, β). It can be a scalar or a vector of length 2. If it takes a scalar
value, then the prior means for both α and β will be set to that value. The default is
0.

� AB0: prior precision of (α, β). It can be a scalar or a 2× 2 matrix. If it takes a scalar
value, then the prior precision will be diag(AB0,2). The prior precision is assumed to
be same for all the items. The default is 0.25.

Zelig users may wish to refer to help(MCMCirt1d) for more information.
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Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

Examples

1. Basic Example
Attaching the sample dataset:

> data(SupremeCourt)

> names(SupremeCourt) <- c("Rehnquist", "Stevens", "OConnor", "Scalia",

+ "Kennedy", "Souter", "Thomas", "Ginsburg", "Breyer")

Fitting a one-dimensional item response theory model using irt1d:

> z.out <- zelig(cbind(Rehnquist, Stevens, OConnor, Scalia, Kennedy,

+ Souter, Thomas, Ginsburg, Breyer) ~ NULL, data = SupremeCourt,

+ model = "irt1d", B0.alpha = 0.2, B0.beta = 0.2, burnin = 500,

+ mcmc = 10000, thin = 20, verbose = TRUE)

Checking for convergence before summarizing the estimates:

> geweke.diag(z.out$coefficients)
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> heidel.diag(z.out$coefficients)

> summary(z.out)

Model

Let Yi be a vector of choices on J items made by subject i for i = 1, . . . , n. The choice Yij

is assumed to be determined by an unobserved utility Zij, which is a function of the subject
i’s abilities (ideal points) θi and item parameters αj and βj as follows:

Zij = −αj + β′jθi + εij.

� The stochastic component is given by

Yij ∼ Bernoulli(πij)

= π
Yij

ij (1− πij)
1−Yij ,

where πij = Pr(Yij = 1) = E(Zij).

The error term in the unobserved utility equation is independently and identically
distributed with

εij ∼ Normal(0, 1).

� The systematic component is given by

πij = Φ(−αj + β′jθi),

where Φ(·) is the cumulative density function of the standard normal distribution with
mean 0 and variance 1, θi is the subject ability (ideal point) parameter, and αj and
βj are the item parameters. Both subject abilities and item parameters are estimated
from the model, such that the model is identified by placing constraints on the subject
ability parameters.

� The prior for θi is given by

θi ∼ Normal
(
t0, T

−1
0

)
� The joint prior for αj and βj is given by

(αj, βj)
′ ∼ Normal

(
ab0, AB

−1
0

)
where ab0 is a 2-vector of prior means and AB0 is a 2× 2 prior precision matrix.
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Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(cbind(Y1, Y2, Y3) ~ NULL, model = "irt1d", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated subject
abilities(ideal points). If store.item = TRUE, the estimated item parameters α
and β are also contained in coefficients.

– data: the name of the input data frame.

– seed: the random seed used in the model.

� Since there are no explanatory variables, the sim() procedure is not applicable for item
response models.

How to Cite

To cite the irt1d Zelig model:

Ben Goodrich and Ying Lu. 2007. ”irt1d: One Dimensional Item Response
Model” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s Sta-
tistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The unidimensional item-response function is part of the MCMCpack library by Andrew D.
Martin and Kevin M. Quinn (Martin and Quinn 2005). The convergence diagnostics are
part of the CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines
(Plummer et al. 2005). Sample data are adapted from Martin and Quinn (2005).
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12.21 irtkd: k-Dimensional Item Response Theory Model

Given several observed dependent variables and an unobserved explanatory variable, item
response theory estimates the latent variable (ideal points). The model is estimated using
the Markov Chain Monte Carlo algorithm, via a combination of Gibbs sampling and data
augmentation. Use this model if you believe that the ideal points lie in k dimensions. See the
unidimensional item response model (Section 12.20) for a single hypothesized latent variable.

Syntax

> z.out <- zelig(cbind(Y1, Y2, Y3) ~ NULL, dimensions = 1,

model = "irtkd", data = mydata)

Inputs

irtkd accepts the following arguments:

� Y1, Y2, and Y3: Y1 contains the items for subject“Y1”, Y2 contains the items for subject
“Y2”, and so on.

� dimensions: The number of dimensions in the latent space. The default is 1.

Additional arguments

irtkd accepts the following additional arguments for model specification:

� item.constraints: a list of lists specifying possible simple equality or inequality
constraints on the item parameters. A typical entry has one of the following forms:

– varname = list(): by default, no constraints are imposed.

– varname = list(d, c): constrains the dth item parameter for the item named
varname to be equal to c.

– varname = list(d, "+"): constrains the dth item parameter for the item named
varname to be positive;

– varname = list(d, "-"): constrains the dth item parameter for the item named
varname to be negative.

In a k dimensional model, the first item parameter for item i is the difficulty parameter
αi, the second item parameter is the discrimination parameter on dimension 1, (βi,1),
the third item parameter is the discrimination parameter on dimension 2, (βi,2), . . .,
and (k + 1)th item parameter is the discrimination parameter on dimension k, (βi,k).
The item difficulty parameter(α) should not be constrained in general.

irtkd accepts the following additional arguments to monitor the sampling scheme for the
Markov chain:
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� burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).

� mcmc: number of the MCMC iterations after burnin (defaults to 20,000).

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen. The default is FALSE.

� zelig.data: the input data frame if save.data = TRUE.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed 12345.

� alphabeta.start: starting values for the item parameters α and β, either a scalar or
a (k + 1) × items matrix. If it is a scalar, then that value will be the starting value
for all the elements of alphabeta.start. The default is NA which sets the starting
values for the unconstrained elements based on a series of proportional odds logistic
regressions. The starting values for the inequality constrained elements are set to be
either 1.0 or -1.0 depending on the nature of the constraints.

� store.item: defaults to FALSE. If TRUE stores the posterior draws of the item param-
eters. (For a large number of draws or a large number observations, this may take a
lot of memory.)

� store.ability: defaults to TRUE, storing the posterior draws of the subject abilities.
(For a large number of draws or a large number observations, this may take a lot of
memory.)

� drop.constant.items: defaults to TRUE, dropping items with no variation before fit-
ting the model.

irtkd accepts the following additional arguments to specify prior parameters used in the
model:

� b0: prior mean of (α, β), either as a scalar or a vector of compatible length. If a scalar
value, then the prior means for both α and β will be set to that value. The default is
0.

� B0: prior precision for (α, β), either a scalar or a (k+1)×itemsmatrix. If a scalar value,
the prior precision will be a blocked diagonal matrix with elements diag(B0,items).
The prior precision is assumed to be same for all the items. The default is 0.25.

Zelig users may wish to refer to help(MCMCirtKd) for more information.
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Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

Examples

1. Basic Example
Attaching the sample dataset:

> data(SupremeCourt)

> names(SupremeCourt) <- c("Rehnquist", "Stevens", "OConnor", "Scalia",

+ "Kennedy", "Souter", "Thomas", "Ginsburg", "Breyer")

Fitting a one-dimensional item response theory model using irtkd:

> z.out <- zelig(cbind(Rehnquist, Stevens, OConnor, Scalia, Kennedy,

+ Souter, Thomas, Ginsburg, Breyer) ~ NULL, dimensions = 1,

+ data = SupremeCourt, model = "irtkd", B0 = 0.25, burnin = 5000,

+ mcmc = 50000, thin = 10, verbose = TRUE)

Checking for convergence before summarizing the estimates:

> geweke.diag(z.out$coefficients)

251



> heidel.diag(z.out$coefficients)

> raftery.diag(z.out$coefficients)

> summary(z.out)

Model

Let Yi be a vector of choices on J items made by subject i for i = 1, . . . , n. The choice Yij is
assumed to be determined by unobserved utility Zij, which is a function of subject abilities
(ideal points) θi and item parameters αj and βj,

Zij = −αj + β′jθi + εij.

In the k-dimensional item response theory model, each subject’s ability is represented by
a k-vector, θi. Each item has a difficulty parameter αj and a k-dimensional discrimination
parameter βj. In one-dimensional item response theory model, k = 1.

� The stochastic component is given by

Yij ∼ Bernoulli(πij)

= π
Yij

ij (1− πij)
1−Yij ,

where πij = Pr(Yij = 1) = E(Zij).

The error term in the unobserved utility equation has a standard normal distribution,

εij ∼ Normal(0, 1).

� The systematic component is given by

πij = Φ(−αj + βjθi),

where Φ(·) is the cumulative density function of the standard normal distribution
with mean 0 and variance 1, while θi contains the k-dimensional subject abilities(ideal
points), and αj and βj are the item parameters. Both subject abilities and item
parameters need to estimated from the model. The model is identified by placing
constraints on the item parameters.

� The prior for θi is given by

θi ∼ Normalk(0, Ik)

� The joint prior for αj and βj is given by

(αj, βj)
′ ∼ Normalk+1

(
b0j
, B−1

0j

)
where b0j

is a (k+1)-vector of prior mean and B0j
is a (k+1)× (k+1) prior precision

matrix which is assumed to be diagonal.
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Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(cbind(Y1, Y2, Y3) ~ NULL, model = "irtkd", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated subject
abilities(ideal points). If store.item = TRUE, the estimated item parameters α
and β are also contained in coefficients.

– data: the name of the input data frame.

– seed: the random seed used in the model.

� Since there are no explanatory variables, the sim() procedure is not applicable for item
response models.

How to Cite

To cite the irtkd Zelig model:

Ben Goodrich and Ying Lu. 2007. ”irtkd: K-Dimensional Item Response Model”
in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s Statistical
Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The k dimensional item-response function is part of the MCMCpack library by Andrew D.
Martin and Kevin M. Quinn (Martin and Quinn 2005). The convergence diagnostics are
part of the CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines
(Plummer et al. 2005). Sample data are adapted from Martin and Quinn (2005).
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12.22 logit: Logistic Regression for Dichotomous De-

pendent Variables

Logistic regression specifies a dichotomous dependent variable as a function of a set of ex-
planatory variables. For a Bayesian implementation, see Section 12.23.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "logit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out, x1 = NULL)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for logistic
regression:

� robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard
errors via the sandwich package (see Zeileis (2004)). The default type of robust stan-
dard error is heteroskedastic and autocorrelation consistent (HAC), and assumes that
observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

* "vcovHAC": (default if robust = TRUE) HAC standard errors.

* "kernHAC": HAC standard errors using the weights given in Andrews (1991).

* "weave": HAC standard errors using the weights given in Lumley and Hea-
gerty (1999).

– order.by: defaults to NULL (the observations are chronologically ordered as in the
original data). Optionally, you may specify a vector of weights (either as order.by
= z, where z exists outside the data frame; or as order.by = ~z, where z is a
variable in the data frame) The observations are chronologically ordered by the
size of z.

– ...: additional options passed to the functions specified in method. See the
sandwich library and Zeileis (2004) for more options.

Examples

1. Basic Example

Attaching the sample turnout dataset:

> data(turnout)
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Estimating parameter values for the logistic regression:

> z.out1 <- zelig(vote ~ age + race, model = "logit", data = turnout)

Setting values for the explanatory variables:

> x.out1 <- setx(z.out1, age = 36, race = "white")

Simulating quantities of interest from the posterior distribution.

> s.out1 <- sim(z.out1, x = x.out1)

> summary(s.out1)

> plot(s.out1)
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2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low education (25th percentile)
and high education (75th percentile) while all the other variables held at their default
values.

> z.out2 <- zelig(vote ~ race + educate, model = "logit", data = turnout)

> x.high <- setx(z.out2, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out2, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out2, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)
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3. Presenting Results: An ROC Plot

One can use an ROC plot to evaluate the fit of alternative model specifications. (Use
demo(roc) to view this example, or see King and Zeng (2002).)

> z.out1 <- zelig(vote ~ race + educate + age, model = "logit",

+ data = turnout)

> z.out2 <- zelig(vote ~ race + educate, model = "logit", data = turnout)

> rocplot(z.out1$y, z.out2$y, fitted(z.out1), fitted(z.out2))
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Model

Let Yi be the binary dependent variable for observation i which takes the value of either 0
or 1.
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� The stochastic component is given by

Yi ∼ Bernoulli(yi | πi)

= πyi

i (1− πi)
1−yi

where πi = Pr(Yi = 1).

� The systematic component is given by:

πi =
1

1 + exp(−xiβ)
.

where xi is the vector of k explanatory variables for observation i and β is the vector
of coefficients.

Quantities of Interest

� The expected values (qi$ev) for the logit model are simulations of the predicted prob-
ability of a success:

E(Y ) = πi =
1

1 + exp(−xiβ)
,

given draws of β from its sampling distribution.

� The predicted values (qi$pr) are draws from the Binomial distribution with mean
equal to the simulated expected value πi.

� The first difference (qi$fd) for the logit model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

� The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1) / Pr(Y = 1 | x).

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.
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� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "logit", data), then you may exam-
ine the available information in z.out by using names(z.out), see the coefficients by us-
ing z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: the vector of fitted values for the systemic component, πi.

– linear.predictors: the vector of xiβ

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the name of the input data frame.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:
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– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values
specified in x and x1.

– qi$rr: the simulated risk ratio for the expected probabilities simulated from x

and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the logit Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2008. ”logit: Logistic Regression for
Dichotomous Dependent Variables” in Kosuke Imai, Gary King, and Olivia
Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/
zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The logit model is part of the stats package by Venables and Ripley (2002). Advanced users
may wish to refer to help(glm) and help(family), as well as McCullagh and Nelder (1989).
Robust standard errors are implemented via the sandwich package by Zeileis (2004). Sample
data are from King et al. (2000).
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12.23 logit.bayes: Bayesian Logistic Regression

Logistic regression specifies a dichotomous dependent variable as a function of a set of ex-
planatory variables using a random walk Metropolis algorithm. For a maximum likelihood
implementation, see Section 12.22.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "logit.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

Use the following arguments to monitor the Markov chain:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).

� mcmc: number of the MCMC iterations after burnin (defaults to 10,000).

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� tune: Metropolis tuning parameter, either a positive scalar or a vector of length k,
where k is the number of coefficients. The tuning parameter should be set such that
the acceptance rate of the Metropolis algorithm is satisfactory (typically between 0.20
and 0.5) before using the posterior density for inference. The default value is 1.1.

� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed of 12345.

� beta.start: starting values for the Markov chain, either a scalar or vector with length
equal to the number of estimated coefficients. The default is NA, such that the maximum
likelihood estimates are used as the starting values.

Use the following parameters to specify the model’s priors:

� b0: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value,
that value will be the prior mean for all the coefficients. The default is 0.

� B0: prior precision parameter for the coefficients, either a square matrix (with the
dimensions equal to the number of coefficients) or a scalar. If a scalar value, that value
times an identity matrix will be the prior precision parameter. The default is 0, which
leads to an improper prior.
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Zelig users may wish to refer to help(logit.bayes) for more information.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

Examples

1. Basic Example
Attaching the sample dataset:

> data(turnout)

Estimating the logistic regression using logit.bayes:

> z.out <- zelig(vote ~ race + educate, model = "logit.bayes",

+ data = turnout, verbose = TRUE)

Convergence diagnostics before summarizing the estimates:

> geweke.diag(z.out$coefficients)

> heidel.diag(z.out$coefficients)
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> raftery.diag(z.out$coefficients)

> summary(z.out)

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given x.out.

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

2. Simulating First Differences
Estimating the first difference (and risk ratio) in individual’s probability of voting when
education is set to be low (25th percentile) versus high (75th percentile) while all the
other variables held at their default values.

> x.high <- setx(z.out, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

Model

Let Yi be the binary dependent variable for observation i which takes the value of either 0
or 1.

� The stochastic component is given by

Yi ∼ Bernoulli(πi)

= πYi
i (1− πi)

1−Yi ,

where πi = Pr(Yi = 1).

� The systematic component is given by

πi =
1

1 + exp(−xiβ)
,

where xi is the vector of k explanatory variables for observation i and β is the vector
of coefficients.

� The prior for β is given by

β ∼ Normalk
(
b0, B

−1
0

)
where b0 is the vector of means for the k explanatory variables and B0 is the k × k
precision matrix (the inverse of a variance-covariance matrix).
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Quantities of Interest

� The expected values (qi$ev) for the logit model are simulations of the predicted prob-
ability of a success:

E(Y ) = πi =
1

1 + exp(−xiβ)
,

given the posterior draws of β from the MCMC iterations.

� The predicted values (qi$pr) are draws from the Bernoulli distribution with mean
equal to the simulated expected value πi.

� The first difference (qi$fd) for the logit model is defined as

FD = Pr(Y = 1 | X1)− Pr(Y = 1 | X).

� The risk ratio (qi$rr)is defined as

RR = Pr(Y = 1 | X1) / Pr(Y = 1 | X).

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is

1∑
ti

∑
i:ti=1

[Yi(ti = 1)− E[Yi(ti = 0)]],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups.

� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group is

1∑
ti

∑
i:ti=1

[Yi(ti = 1)− ̂Yi(ti = 0)],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run

z.out <- zelig(y ~ x, model = "logit.bayes", data)
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then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and a default summary of information through summary(z.out). Other elements available
through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated parame-
ters.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

� From the sim() output object s.out:

– qi$ev: the simulated expected values(probabilities) for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected values for the values specified
in x and x1.

– qi$rr: the simulated risk ratio for the expected values simulated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the logit.bayes Zelig model:

Ben Goodrich and Ying Lu. 2007. ”logit.bayes: Bayesian Logistic Regression for
Dichotomous Dependent Variables” in Kosuke Imai, Gary King, and Olivia
Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/
zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.
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See also

Bayesian logistic regression is part of the MCMCpack library by Andrew D. Martin and
Kevin M. Quinn (Martin and Quinn 2005). The convergence diagnostics are part of the
CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines (Plummer
et al. 2005).
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12.24 logit.gam: Generalized Additive Model for Di-

chotomous Dependent Variables

This function runs a nonparametric Generalized Additive Model (GAM) for dichotomous
dependent variables.

Syntax

> z.out <- zelig(y ~ x1 + s(x2), model = "logit.gam", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Where s() indicates a variable to be estimated via nonparametric smooth. All variables for
which s() is not specified, are estimated via standard parametric methods.

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for GAM
models.

� method: Controls the fitting method to be used. Fitting methods are selected via a
list environment within method=gam.method(). See gam.method() for details.

� scale: Generalized Cross Validation (GCV) is used if scale = 0 (see the “Model”
section for details) except for Logit models where a Un-Biased Risk Estimator (UBRE)
(also see the “Model” section for details) is used with a scale parameter assumed to be
1. If scale is greater than 1, it is assumed to be the scale parameter/variance and
UBRE is used. If scale is negative GCV is used.

� knots: An optional list of knot values to be used for the construction of basis functions.

� H: A user supplied fixed quadratic penalty on the parameters of the GAM can be
supplied with this as its coefficient matrix. For example, ridge penalties can be added
to the parameters of the GAM to aid in identification on the scale of the linear predictor.

� sp: A vector of smoothing parameters for each term.

� ...: additional options passed to the logit.gam model. See the mgcv library for
details.

Examples

1. Basic Example

Create some count data:
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> set.seed(0); n <- 400; sig <- 2;

> x0 <- runif(n, 0, 1); x1 <- runif(n, 0, 1)

> x2 <- runif(n, 0, 1); x3 <- runif(n, 0, 1)

> g <- (f-5)/3

> g <- binomial()$linkinv(g)

> y <- rbinom(g,1,g)

> my.data <- as.data.frame(cbind(y, x0, x1, x2, x3))

Estimate the model, summarize the results, and plot nonlinearities:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), model = "logit.gam",

+ data = my.data)

> summary(z.out)

> plot(z.out, pages = 1, residuals = TRUE)

Note that the plot() function can be used after model estimation and before simulation
to view the nonlinear relationships in the independent variables:

Set values for the explanatory variables to their default (mean/mode) values, then
simulate, summarize and plot quantities of interest:

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low values (20th percentile) and
high values (80th percentile) of the explanatory variable x3 while all the other variables
are held at their default (mean/mode) values.

> x.high <- setx(z.out, x3 = quantile(my.data$x3, 0.8))

> x.low <- setx(z.out, x3 = quantile(my.data$x3, 0.2))

> s.out <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out)

> plot(s.out)

3. Variations in GAM model specification. Note that setx and sim work as shown in the
above examples for any GAM model. As such, in the interest of parsimony, I will not
re-specify the simulations of quantities of interest.

An extra ridge penalty (useful with convergence problems):
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> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), H = diag(0.5,

+ 37), model = "logit.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1, residuals = TRUE)

Set the smoothing parameter for the first term, estimate the rest:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), sp = c(0.01,

+ -1, -1, -1), model = "logit.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1)

Set lower bounds on smoothing parameters:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), min.sp = c(0.001,

+ 0.01, 0, 10), model = "logit.gam", data = my.data)
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> summary(z.out)

> plot(z.out, pages = 1)

A GAM with 3df regression spline term & 2 penalized terms:

> z.out <- zelig(y ~ s(x0, k = 4, fx = TRUE, bs = "tp") + s(x1,

+ k = 12) + s(x2, k = 15), model = "logit.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1)

Model

GAM models use families the same way GLM models do: they specify the distribution and
link function to use in model fitting. In the case of logit.gam a logistic link function is used.
Specifically, let Yi be the binary dependent variable for observation i which takes the value
of either 0 or 1.
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� The logistic distribution has stochastic component

Yi ∼ Bernoulli(yi|πi)

= πyi

i (1− πi)
1−yi

where πi = Pr(Yi = 1).

� The systematic component is given by:

πi =
1

1 + exp
(
−xiβ +

∑J
j=1 fj(Zj)

) ,
where xi is the vector of covariates, β is the vector of coefficients and fj(Zj) for j =
1, . . . J is the set of smooth terms..

Generalized additive models (GAMs) are similar in many respects to generalized linear
models (GLMs). Specifically, GAMs are generally fit by penalized maximum likelihood
estimation and GAMs have (or can have) a parametric component identical to that of a
GLM. The difference is that GAMs also include in their linear predictors a specified sum of
smooth functions.

In this GAM implementation, smooth functions are represented using penalized regression
splines. Two techniques may be used to estimate smoothing parameters: Generalized Cross
Validation (GCV),

n
D

(n−DF )2
, (12.2)

or an Un-Biased Risk Estimator (UBRE) (which is effectively just a rescaled AIC),

D

n
+ 2s

DF

n− s
, (12.3)

where D is the deviance, n is the number of observations, s is the scale parameter, and DF
is the effective degrees of freedom of the model. The use of GCV or UBRE can be set by
the user with the scale command described in the “Additional Inputs” section and in either
case, smoothing parameters are chosen to minimize the GCV or UBRE score for the model.

Estimation for GAM models proceeds as follows: first, basis functions and a set (one
or more) of quadratic penalty coefficient matrices are constructed for each smooth term.
Second, a model matrix is is obtained for the parametric component of the GAM. These
matrices are combined to produce a complete model matrix and a set of penalty matrices
for the smooth terms. Iteratively Reweighted Least Squares (IRLS) is then used to estimate
the model; at each iteration of the IRLS, a penalized weighted least squares model is run
and the smoothing parameters of that model are estimated by GCV or UBRE. This process
is repeated until convergence is achieved.

Further details of the GAM fitting process are given in Wood (2000, 2004, 2006).
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Quantities of Interest

The quantities of interest for the logit.gam model are the same as those for the standard
logistic regression.

� The expected value (qi$ev) for the logit.gam model is the mean of simulations from
the stochastic component,

πi =
1

1 + exp
(
−xiβ +

∑J
j=1 fj(Zj)

) ,
� The predicted values (qi$pr) are draws from the Binomial distribution with mean

equal to the simulated expected value πi.

� The first difference (qi$fd) for the logit.gam model is defined as

FD = Pr(Y |w1)− Pr(Y |w)

for w = {X,Z}.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "logit.gam", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by us-
ing coefficients(z.out), and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IRLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– method: the fitting method used.

– converged: logical indicating weather the model converged or not.

– smooth: information about the smoothed parameters.

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the input data frame.
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– model: the model matrix used.

� From summary(z.out)(as well as from zelig()), you may extract:

– p.coeff: the coefficients of the parametric components of the model.

– se: the standard errors of the entire model.

– p.table: the coefficients, standard errors, and associated t statistics for the para-
metric portion of the model.

– s.table: the table of estimated degrees of freedom, estimated rank, F statistics,
and p-values for the nonparametric portion of the model.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from
x and x1.

How to Cite

To cite the logit.gam Zelig model:

Skyler J. Cranmer. 2007. ”logit.gam: Generalized Additive Model for Dichoto-
mous Dependent Variables” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The logit.gam model is adapted from the mgcv package by Simon N. Wood (Wood 2006).
Advanced users may wish to refer to help(gam), Wood (2004), Wood (2000), and other
documentation accompanying the mgcv package. All examples are reproduced and extended
from mgcv’s gam() help pages.

273

http://gking.harvard.edu/zelig
http://GKing.harvard.edu/zelig


12.25 logit.gee: Generalized Estimating Equation for

Logistic Regression

The GEE logit estimates the same model as the standard logistic regression (appropriate
when you have a dichotomous dependent variable and a set of explanatory variables). Unlike
in logistic regression, GEE logit allows for dependence within clusters, such as in longitudinal
data, although its use is not limited to just panel data. The user must first specify a“working”
correlation matrix for the clusters, which models the dependence of each observation with
other observations in the same cluster. The “working” correlation matrix is a T × T matrix
of correlations, where T is the size of the largest cluster and the elements of the matrix
are correlations between within-cluster observations. The appeal of GEE models is that
it gives consistent estimates of the parameters and consistent estimates of the standard
errors can be obtained using a robust “sandwich” estimator even if the “working” correlation
matrix is incorrectly specified. If the “working” correlation matrix is correctly specified,
GEE models will give more efficient estimates of the parameters. GEE models measure
population-averaged effects as opposed to cluster-specific effects (See Zorn (2001)).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "logit.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted by id and
should be ordered within each cluster when appropriate.

Additional Inputs

� robust: defaults to TRUE. If TRUE, consistent standard errors are estimated using a
“sandwich” estimator.

Use the following arguments to specify the structure of the “working” correlations within
clusters:

� corstr: defaults to "independence". It can take on the following arguments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′ with t 6= t′.
It assumes that there is no correlation within the clusters and the model becomes
equivalent to standard logistic regression. The “working” correlation matrix is the
identity matrix.

– Fixed (corstr = "fixed"): If selected, the user must define the “working” cor-
relation matrix with the R argument rather than estimating it from the model.
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– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. Choose this option when the correlations are
assumed to be the same for observations of the same |t − t′| periods apart for
|t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. This option relaxes the assumption that the
correlations are the same for all observations of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence (Mv=2)
1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′ with t 6= t′.

Choose this option if the correlations are assumed to be the same for all observa-
tions within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


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– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr = "AR-M"),
you must also specify Mv = m, where m is the number of periods t of de-
pendence. For example, the first order autoregressive model (AR-1) implies
cor(yit, yit′) = α|t−t′|,∀t, t′ with t 6= t′. In AR-1, observation 1 and observation 2
have a correlation of α. Observation 2 and observation 3 also have a correlation
of α. Observation 1 and observation 3 have a correlation of α2, which is a func-
tion of how 1 and 2 are correlated (α) multiplied by how 2 and 3 are correlated
(α). Observation 1 and 4 have a correlation that is a function of the correlation
between 1 and 2, 2 and 3, and 3 and 4, and so forth.

Sample “working” correlation for Stationary AR-1 (Mv=1)
1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′ with t 6= t′.

No constraints are placed on the correlations, which are then estimated from the
data.

� Mv: defaults to 1. It specifies the number of periods of correlation and only needs to
be specified when corstr is "stat_M_dep", "non_stat_M_dep", or "AR-M".

� R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating
it from the data. The argument is used only when corstr is "fixed". The input is a
T × T matrix of correlations, where T is the size of the largest cluster.

Examples

1. Example with Stationary 3 Dependence

Attaching the sample turnout dataset:

> data(turnout)

Variable identifying clusters

> turnout$cluster <- rep(c(1:200), 10)

Sorting by cluster

> sorted.turnout <- turnout[order(turnout$cluster), ]

Estimating parameter values for the logistic regression:

276



> z.out1 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster",

+ data = sorted.turnout, robust = TRUE, corstr = "stat_M_dep",

+ Mv = 3)

Setting values for the explanatory variables to their default values:

> x.out1 <- setx(z.out1)

Simulating quantities of interest:

> s.out1 <- sim(z.out1, x = x.out1)

> summary(s.out1)

> plot(s.out1)
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2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low education (25th percentile)
and high education (75th percentile) while all the other variables held at their default
values.

> x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)
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3. Example with Fixed Correlation Structure

User-defined correlation structure
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> corr.mat <- matrix(rep(0.5, 100), nrow = 10, ncol = 10)

> diag(corr.mat) <- 1

Generating empirical estimates:

> z.out2 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster",

+ data = sorted.turnout, robust = TRUE, corstr = "fixed", R = corr.mat)

Viewing the regression output:

> summary(z.out2)

The Model

Suppose we have a panel dataset, with Yit denoting the binary dependent variable for unit i
at time t. Yi is a vector or cluster of correlated data where yit is correlated with yit′ for some
or all t, t′. Note that the model assumes correlations within i but independence across i.

� The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | πi)

Yit ∼ g(yit | πit)

where f and g are unspecified distributions with means πi and πit. GEE models make
no distributional assumptions and only require three specifications: a mean function,
a variance function, and a correlation structure.

� The systematic component is the mean function, given by:

πit =
1

1 + exp(−xitβ)

where xit is the vector of k explanatory variables for unit i at time t and β is the vector
of coefficients.

� The variance function is given by:

Vit = πit(1− πit)

� The correlation structure is defined by a T × T “working” correlation matrix, where
T is the size of the largest cluster. Users must specify the structure of the “working”
correlation matrix a priori. The “working” correlation matrix then enters the variance
term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = πit(1 − πit) as
the tth diagonal element, Ri(α) is the “working” correlation matrix, and φ is a scale
parameter. The parameters are then estimated via a quasi-likelihood approach.
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� In GEE models, if the mean is correctly specified, but the variance and correlation
structure are incorrectly specified, then GEE models provide consistent estimates of
the parameters and thus the mean function as well, while consistent estimates of the
standard errors can be obtained via a robust “sandwich” estimator. Similarly, if the
mean and variance are correctly specified but the correlation structure is incorrectly
specified, the parameters can be estimated consistently and the standard errors can be
estimated consistently with the sandwich estimator. If all three are specified correctly,
then the estimates of the parameters are more efficient.

� The robust“sandwich”estimator gives consistent estimates of the standard errors when
the correlations are specified incorrectly only if the number of units i is relatively large
and the number of repeated periods t is relatively small. Otherwise, one should use
the “näıve” model-based standard errors, which assume that the specified correlations
are close approximations to the true underlying correlations. See ? for more details.

Quantities of Interest

� All quantities of interest are for marginal means rather than joint means.

� The method of bootstrapping generally should not be used in GEE models. If you
must bootstrap, bootstrapping should be done within clusters, which is not currently
supported in Zelig. For conditional prediction models, data should be matched within
clusters.

� The expected values (qi$ev) for the GEE logit model are simulations of the predicted
probability of a success:

E(Y ) = πc =
1

1 + exp(−xcβ)
,

given draws of β from its sampling distribution, where xc is a vector of values, one for
each independent variable, chosen by the user.

� The first difference (qi$fd) for the GEE logit model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

� The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1) / Pr(Y = 1 | x).

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,
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where trit is a binary explanatory variable defining the treatment (trit = 1) and control
(trit = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yit(trit = 0)], the counterfactual expected value of Yit for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to trit = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "logit.gee", id, data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic component, πit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and z-statistics.

– working.correlation: the “working” correlation matrix

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values
specified in x and x1.

– qi$rr: the simulated risk ratio for the expected probabilities simulated from x

and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.
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How To Cite

To cite the logit.gee Zelig model:

Patrick Lam. 2007. ”logit.gee: General Estimating Equation for Logistic Re-
gression” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The gee function is part of the gee package by Vincent J. Carey, ported to R by Thomas Lum-
ley and Brian Ripley. Advanced users may wish to refer to help(gee) and help(family).
Sample data are from King et al. (2000).
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12.26 logit.gee: Generalized Estimating Equation for

Logistic Regression

The GEE logit estimates the same model as the standard logistic regression (appropriate
when you have a dichotomous dependent variable and a set of explanatory variables). Unlike
in logistic regression, GEE logit allows for dependence within clusters, such as in longitudinal
data, although its use is not limited to just panel data. The user must first specify a“working”
correlation matrix for the clusters, which models the dependence of each observation with
other observations in the same cluster. The “working” correlation matrix is a T × T matrix
of correlations, where T is the size of the largest cluster and the elements of the matrix
are correlations between within-cluster observations. The appeal of GEE models is that
it gives consistent estimates of the parameters and consistent estimates of the standard
errors can be obtained using a robust “sandwich” estimator even if the “working” correlation
matrix is incorrectly specified. If the “working” correlation matrix is correctly specified,
GEE models will give more efficient estimates of the parameters. GEE models measure
population-averaged effects as opposed to cluster-specific effects (See Zorn (2001)).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "logit.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted by id and
should be ordered within each cluster when appropriate.

Additional Inputs

� robust: defaults to TRUE. If TRUE, consistent standard errors are estimated using a
“sandwich” estimator.

Use the following arguments to specify the structure of the “working” correlations within
clusters:

� corstr: defaults to "independence". It can take on the following arguments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′ with t 6= t′.
It assumes that there is no correlation within the clusters and the model becomes
equivalent to standard logistic regression. The “working” correlation matrix is the
identity matrix.

– Fixed (corstr = "fixed"): If selected, the user must define the “working” cor-
relation matrix with the R argument rather than estimating it from the model.
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– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. Choose this option when the correlations are
assumed to be the same for observations of the same |t − t′| periods apart for
|t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. This option relaxes the assumption that the
correlations are the same for all observations of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence (Mv=2)
1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′ with t 6= t′.

Choose this option if the correlations are assumed to be the same for all observa-
tions within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


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– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr = "AR-M"),
you must also specify Mv = m, where m is the number of periods t of de-
pendence. For example, the first order autoregressive model (AR-1) implies
cor(yit, yit′) = α|t−t′|,∀t, t′ with t 6= t′. In AR-1, observation 1 and observation 2
have a correlation of α. Observation 2 and observation 3 also have a correlation
of α. Observation 1 and observation 3 have a correlation of α2, which is a func-
tion of how 1 and 2 are correlated (α) multiplied by how 2 and 3 are correlated
(α). Observation 1 and 4 have a correlation that is a function of the correlation
between 1 and 2, 2 and 3, and 3 and 4, and so forth.

Sample “working” correlation for Stationary AR-1 (Mv=1)
1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′ with t 6= t′.

No constraints are placed on the correlations, which are then estimated from the
data.

� Mv: defaults to 1. It specifies the number of periods of correlation and only needs to
be specified when corstr is "stat_M_dep", "non_stat_M_dep", or "AR-M".

� R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating
it from the data. The argument is used only when corstr is "fixed". The input is a
T × T matrix of correlations, where T is the size of the largest cluster.

Examples

1. Example with Stationary 3 Dependence

Attaching the sample turnout dataset:

> data(turnout)

Variable identifying clusters

> turnout$cluster <- rep(c(1:200), 10)

Sorting by cluster

> sorted.turnout <- turnout[order(turnout$cluster), ]

Estimating parameter values for the logistic regression:
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> z.out1 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster",

+ data = sorted.turnout, robust = TRUE, corstr = "stat_M_dep",

+ Mv = 3)

Setting values for the explanatory variables to their default values:

> x.out1 <- setx(z.out1)

Simulating quantities of interest:

> s.out1 <- sim(z.out1, x = x.out1)

> summary(s.out1)

> plot(s.out1)
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2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low education (25th percentile)
and high education (75th percentile) while all the other variables held at their default
values.

> x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)
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3. Example with Fixed Correlation Structure

User-defined correlation structure
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> corr.mat <- matrix(rep(0.5, 100), nrow = 10, ncol = 10)

> diag(corr.mat) <- 1

Generating empirical estimates:

> z.out2 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster",

+ data = sorted.turnout, robust = TRUE, corstr = "fixed", R = corr.mat)

Viewing the regression output:

> summary(z.out2)

The Model

Suppose we have a panel dataset, with Yit denoting the binary dependent variable for unit i
at time t. Yi is a vector or cluster of correlated data where yit is correlated with yit′ for some
or all t, t′. Note that the model assumes correlations within i but independence across i.

� The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | πi)

Yit ∼ g(yit | πit)

where f and g are unspecified distributions with means πi and πit. GEE models make
no distributional assumptions and only require three specifications: a mean function,
a variance function, and a correlation structure.

� The systematic component is the mean function, given by:

πit =
1

1 + exp(−xitβ)

where xit is the vector of k explanatory variables for unit i at time t and β is the vector
of coefficients.

� The variance function is given by:

Vit = πit(1− πit)

� The correlation structure is defined by a T × T “working” correlation matrix, where
T is the size of the largest cluster. Users must specify the structure of the “working”
correlation matrix a priori. The “working” correlation matrix then enters the variance
term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = πit(1 − πit) as
the tth diagonal element, Ri(α) is the “working” correlation matrix, and φ is a scale
parameter. The parameters are then estimated via a quasi-likelihood approach.
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� In GEE models, if the mean is correctly specified, but the variance and correlation
structure are incorrectly specified, then GEE models provide consistent estimates of
the parameters and thus the mean function as well, while consistent estimates of the
standard errors can be obtained via a robust “sandwich” estimator. Similarly, if the
mean and variance are correctly specified but the correlation structure is incorrectly
specified, the parameters can be estimated consistently and the standard errors can be
estimated consistently with the sandwich estimator. If all three are specified correctly,
then the estimates of the parameters are more efficient.

� The robust“sandwich”estimator gives consistent estimates of the standard errors when
the correlations are specified incorrectly only if the number of units i is relatively large
and the number of repeated periods t is relatively small. Otherwise, one should use
the “näıve” model-based standard errors, which assume that the specified correlations
are close approximations to the true underlying correlations. See ? for more details.

Quantities of Interest

� All quantities of interest are for marginal means rather than joint means.

� The method of bootstrapping generally should not be used in GEE models. If you
must bootstrap, bootstrapping should be done within clusters, which is not currently
supported in Zelig. For conditional prediction models, data should be matched within
clusters.

� The expected values (qi$ev) for the GEE logit model are simulations of the predicted
probability of a success:

E(Y ) = πc =
1

1 + exp(−xcβ)
,

given draws of β from its sampling distribution, where xc is a vector of values, one for
each independent variable, chosen by the user.

� The first difference (qi$fd) for the GEE logit model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

� The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1) / Pr(Y = 1 | x).

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,
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where trit is a binary explanatory variable defining the treatment (trit = 1) and control
(trit = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yit(trit = 0)], the counterfactual expected value of Yit for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to trit = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "logit.gee", id, data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic component, πit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and z-statistics.

– working.correlation: the “working” correlation matrix

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values
specified in x and x1.

– qi$rr: the simulated risk ratio for the expected probabilities simulated from x

and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.
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How To Cite

To cite the logit.gee Zelig model:

Patrick Lam. 2007. ”logit.gee: General Estimating Equation for Logistic Re-
gression” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The gee function is part of the gee package by Vincent J. Carey, ported to R by Thomas Lum-
ley and Brian Ripley. Advanced users may wish to refer to help(gee) and help(family).
Sample data are from King et al. (2000).
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12.27 logit.mixed: Mixed effects logistic Regression

Use generalized multi-level linear regression if you have covariates that are grouped according
to one or more classification factors. The logit model is appropriate when the dependent
variable is dichotomous.

While generally called multi-level models in the social sciences, this class of models is often
referred to as mixed-effects models in the statistics literature and as hierarchical models in a
Bayesian setting. This general class of models consists of linear models that are expressed as
a function of both fixed effects, parameters corresponding to an entire population or certain
repeatable levels of experimental factors, and random effects, parameters corresponding to
individual experimental units drawn at random from a population.

Syntax

z.out <- zelig(formula= y ~ x1 + x2 + tag(z1 + z2 | g),

data=mydata, model="logit.mixed")

z.out <- zelig(formula= list(mu=y ~ xl + x2 + tag(z1, gamma | g),

gamma= ~ tag(w1 + w2 | g)), data=mydata, model="logit.mixed")

Inputs

zelig() takes the following arguments for mixed:

� formula: a two-sided linear formula object describing the systematic component of
the model, with the response on the left of a ˜ operator and the fixed effects terms,
separated by + operators, on the right. Any random effects terms are included with
the notation tag(z1 + ... + zn | g) with z1 + ... + zn specifying the model
for the random effects and g the grouping structure. Random intercept terms are
included with the notation tag(1 | g).
Alternatively, formula may be a list where the first entry, mu, is a two-sided linear
formula object describing the systematic component of the model, with the repsonse
on the left of a˜operator and the fixed effects terms, separated by + operators, on the
right. Any random effects terms are included with the notation tag(z1, gamma | g)

with z1 specifying the individual level model for the random effects, g the grouping
structure and gamma references the second equation in the list. The gamma equation is
one-sided linear formula object with the group level model for the random effects on
the right side of a˜operator. The model is specified with the notation tag(w1 + ...

+ wn | g) with w1 + ... + wn specifying the group level model and g the grouping
structure.

Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:
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� data: An optional data frame containing the variables named in formula. By default,
the variables are taken from the environment from which zelig() is called.

� na.action: A function that indicates what should happen when the data contain NAs.
The default action (na.fail) causes zelig() to print an error message and terminate
if there are any incomplete observations.

Additionally, users may with to refer to lmer in the package lme4 for more information,
including control parameters for the estimation algorithm and their defaults.

Examples

1. Basic Example with First Differences

Attach sample data:

> data(voteincome)

Estimate model:

> z.out1 <- zelig(vote ~ education + age + female + tag(1 | state),

+ data = voteincome, model = "logit.mixed")

Summarize regression coefficients and estimated variance of random effects:

> summary(z.out1)

Set explanatory variables to their default values, with high (80th percentile) and low
(20th percentile) values for education:

> x.high <- setx(z.out1, education = quantile(voteincome$education,

+ 0.8))

> x.low <- setx(z.out1, education = quantile(voteincome$education,

+ 0.2))

Generate first differences for the effect of high versus low education on voting:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)
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Mixed effects Logistic Regression Model

Let Yij be the binary dependent variable, realized for observation j in group i as yij which
takes the value of either 0 or 1, for i = 1, . . . ,M , j = 1, . . . , ni.

� The stochastic component is described by a Bernoulli distribution with mean vector
πij.

Yij ∼ Bernoulli(yij|πij) = π
yij

ij (1− πij)
1−yij

where
πij = Pr(Yij = 1)

� The q-dimensional vector of random effects, bi, is restricted to be mean zero, and
therefore is completely characterized by the variance covarance matrix Ψ, a (q × q)
symmetric positive semi-definite matrix.

bi ∼ Normal(0,Ψ)

� The systematic component is

πij ≡
1

1 + exp(−(Xijβ + Zijbi))

where Xij is the (ni × p ×M) array of known fixed effects explanatory variables, β
is the p-dimensional vector of fixed effects coefficients, Zij is the (ni × q ×M) array
of known random effects explanatory variables and bi is the q-dimensional vector of
random effects.

Quantities of Interest

� The predicted values (qi$pr) are draws from the Binomial distribution with mean
equal to the simulated expected value, πij for

πij =
1

1 + exp(−(Xijβ + Zijbi))

given Xij and Zij and simulations of of β and bi from their posterior distributions.
The estimated variance covariance matrices are taken as correct and are themselves
not simulated.

� The expected values (qi$ev) are simulations of the predicted probability of a success
given draws of β from its posterior:

E(Yij|Xij) = πij =
1

1 + exp(−Xijβ)
.
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� The first difference (qi$fd) is given by the difference in predicted probabilities, condi-
tional on Xij and X ′

ij, representing different values of the explanatory variables.

FD(Yij|Xij, X
′
ij) = Pr(Yij = 1|Xij)− Pr(Yij = 1|X ′

ij)

� The risk ratio (qi$rr) is defined as

RR(Yij|Xij, X
′
ij) =

Pr(Yij = 1|Xij)

Pr(Yij = 1|X ′
ij)

� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− ̂Yij(tij = 0)},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control
(tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
Yij(tij = 0), the counterfactual predicted value of Yij for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to tij = 0.

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− E[Yij(tij = 0)]},

where tij is a binary explanatory variable defining the treatment (tij = 1) and con-
trol (tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
E[Yij(tij = 0)], the counterfactual expected value of Yij for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to tij = 0.

Output Values

The output of each Zelig command contains useful information which you may view. You
may examine the available information in z.out by using slotNames(z.out), see the fixed
effect coefficients by using summary(z.out)@coefs, and a default summary of information
through summary(z.out). Other elements available through the operator are listed below.

� From the zelig() output stored in summary(z.out), you may extract:

– fixef: numeric vector containing the conditional estimates of the fixed effects.
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– ranef: numeric vector containing the conditional modes of the random effects.

– frame: the model frame for the model.

� From the sim() output stored in s.out, you may extract quantities of interest stored
in a data frame:

– qi$pr: the simulated predicted values drawn from the distributions defined by
the expected values.

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences in the expected values for the values specified
in x and x1.

– qi$ate.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

– qi$ate.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the logit.mixed Zelig model:

Delia Bailey and Ferdinand Alimadhi. 2007. ”logit.mixed: Mixed effects logis-
tic model” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Mixed effects logistic regression is part of lme4 package by Douglas M. Bates (Bates 2007).
For a detailed discussion of mixed-effects models, please see ?
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12.28 logit.mixed: Mixed effects logistic Regression

Use generalized multi-level linear regression if you have covariates that are grouped according
to one or more classification factors. The logit model is appropriate when the dependent
variable is dichotomous.

While generally called multi-level models in the social sciences, this class of models is often
referred to as mixed-effects models in the statistics literature and as hierarchical models in a
Bayesian setting. This general class of models consists of linear models that are expressed as
a function of both fixed effects, parameters corresponding to an entire population or certain
repeatable levels of experimental factors, and random effects, parameters corresponding to
individual experimental units drawn at random from a population.

Syntax

z.out <- zelig(formula= y ~ x1 + x2 + tag(z1 + z2 | g),

data=mydata, model="logit.mixed")

z.out <- zelig(formula= list(mu=y ~ xl + x2 + tag(z1, gamma | g),

gamma= ~ tag(w1 + w2 | g)), data=mydata, model="logit.mixed")

Inputs

zelig() takes the following arguments for mixed:

� formula: a two-sided linear formula object describing the systematic component of
the model, with the response on the left of a ˜ operator and the fixed effects terms,
separated by + operators, on the right. Any random effects terms are included with
the notation tag(z1 + ... + zn | g) with z1 + ... + zn specifying the model
for the random effects and g the grouping structure. Random intercept terms are
included with the notation tag(1 | g).
Alternatively, formula may be a list where the first entry, mu, is a two-sided linear
formula object describing the systematic component of the model, with the repsonse
on the left of a˜operator and the fixed effects terms, separated by + operators, on the
right. Any random effects terms are included with the notation tag(z1, gamma | g)

with z1 specifying the individual level model for the random effects, g the grouping
structure and gamma references the second equation in the list. The gamma equation is
one-sided linear formula object with the group level model for the random effects on
the right side of a˜operator. The model is specified with the notation tag(w1 + ...

+ wn | g) with w1 + ... + wn specifying the group level model and g the grouping
structure.

Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:
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� data: An optional data frame containing the variables named in formula. By default,
the variables are taken from the environment from which zelig() is called.

� na.action: A function that indicates what should happen when the data contain NAs.
The default action (na.fail) causes zelig() to print an error message and terminate
if there are any incomplete observations.

Additionally, users may with to refer to lmer in the package lme4 for more information,
including control parameters for the estimation algorithm and their defaults.

Examples

1. Basic Example with First Differences

Attach sample data:

> data(voteincome)

Estimate model:

> z.out1 <- zelig(vote ~ education + age + female + tag(1 | state),

+ data = voteincome, model = "logit.mixed")

Summarize regression coefficients and estimated variance of random effects:

> summary(z.out1)

Set explanatory variables to their default values, with high (80th percentile) and low
(20th percentile) values for education:

> x.high <- setx(z.out1, education = quantile(voteincome$education,

+ 0.8))

> x.low <- setx(z.out1, education = quantile(voteincome$education,

+ 0.2))

Generate first differences for the effect of high versus low education on voting:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)
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Mixed effects Logistic Regression Model

Let Yij be the binary dependent variable, realized for observation j in group i as yij which
takes the value of either 0 or 1, for i = 1, . . . ,M , j = 1, . . . , ni.

� The stochastic component is described by a Bernoulli distribution with mean vector
πij.

Yij ∼ Bernoulli(yij|πij) = π
yij

ij (1− πij)
1−yij

where
πij = Pr(Yij = 1)

� The q-dimensional vector of random effects, bi, is restricted to be mean zero, and
therefore is completely characterized by the variance covarance matrix Ψ, a (q × q)
symmetric positive semi-definite matrix.

bi ∼ Normal(0,Ψ)

� The systematic component is

πij ≡
1

1 + exp(−(Xijβ + Zijbi))

where Xij is the (ni × p ×M) array of known fixed effects explanatory variables, β
is the p-dimensional vector of fixed effects coefficients, Zij is the (ni × q ×M) array
of known random effects explanatory variables and bi is the q-dimensional vector of
random effects.

Quantities of Interest

� The predicted values (qi$pr) are draws from the Binomial distribution with mean
equal to the simulated expected value, πij for

πij =
1

1 + exp(−(Xijβ + Zijbi))

given Xij and Zij and simulations of of β and bi from their posterior distributions.
The estimated variance covariance matrices are taken as correct and are themselves
not simulated.

� The expected values (qi$ev) are simulations of the predicted probability of a success
given draws of β from its posterior:

E(Yij|Xij) = πij =
1

1 + exp(−Xijβ)
.
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� The first difference (qi$fd) is given by the difference in predicted probabilities, condi-
tional on Xij and X ′

ij, representing different values of the explanatory variables.

FD(Yij|Xij, X
′
ij) = Pr(Yij = 1|Xij)− Pr(Yij = 1|X ′

ij)

� The risk ratio (qi$rr) is defined as

RR(Yij|Xij, X
′
ij) =

Pr(Yij = 1|Xij)

Pr(Yij = 1|X ′
ij)

� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− ̂Yij(tij = 0)},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control
(tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
Yij(tij = 0), the counterfactual predicted value of Yij for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to tij = 0.

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− E[Yij(tij = 0)]},

where tij is a binary explanatory variable defining the treatment (tij = 1) and con-
trol (tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
E[Yij(tij = 0)], the counterfactual expected value of Yij for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to tij = 0.

Output Values

The output of each Zelig command contains useful information which you may view. You
may examine the available information in z.out by using slotNames(z.out), see the fixed
effect coefficients by using summary(z.out)@coefs, and a default summary of information
through summary(z.out). Other elements available through the operator are listed below.

� From the zelig() output stored in summary(z.out), you may extract:

– fixef: numeric vector containing the conditional estimates of the fixed effects.

300



– ranef: numeric vector containing the conditional modes of the random effects.

– frame: the model frame for the model.

� From the sim() output stored in s.out, you may extract quantities of interest stored
in a data frame:

– qi$pr: the simulated predicted values drawn from the distributions defined by
the expected values.

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences in the expected values for the values specified
in x and x1.

– qi$ate.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

– qi$ate.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the logit.mixed Zelig model:

Delia Bailey and Ferdinand Alimadhi. 2007. ”logit.mixed: Mixed effects logis-
tic model” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Mixed effects logistic regression is part of lme4 package by Douglas M. Bates (Bates 2007).
For a detailed discussion of mixed-effects models, please see ?
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12.29 logit.net: Network Logistic Regression for Di-

chotomous Proximity Matrix Dependent Vari-

ables

Use network logistic regression analysis for a dependent variable that is a binary valued
proximity matrix (a.k.a. sociomatricies, adjacency matrices, or matrix representations of
directed graphs).

Syntax

> z.out <- zelig(y ~ x1 + x2, model = "logit.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Examples

1. Basic Example

Load the sample data (see ?friendship for details on the structure of the network
dataframe):

> data(friendship)

Estimate model:

> z.out <- zelig(friends ~ advice + prestige + perpower, model = "logit.net",

+ data = friendship)

> summary(z.out)

Setting values for the explanatory variables to their default values:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution.

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low personal power (25th per-
centile) and high personal power (75th percentile) while all the other variables are held
at their default values.
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> x.high <- setx(z.out, perpower = quantile(friendship$perpower,

+ prob = 0.75))

> x.low <- setx(z.out, perpower = quantile(friendship$perpower,

+ prob = 0.25))

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)
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Model

The logit.net model performs a logistic regression of the proximity matrix Y, a m × m
matrix representing network ties, on a set of proximity matrices X. This network regression
model is directly analogous to standard logistic regression element-wise on the appropriately
vectorized matrices. Proximity matrices are vectorized by creating Y , a m2 × 1 vector to
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represent the proximity matrix. The vectorization which produces the Y vector from the Y
matrix is performed by simple row-concatenation of Y. For example, if Y is a 15×15 matrix,
the Y1,1 element is the first element of Y , and the Y2,1 element is the second element of Y
and so on. Once the input matrices are vectorized, standard logistic regression is performed.

Let Yi be the binary dependent variable, produced by vectorizing a binary proximity
matrix, for observation i which takes the value of either 0 or 1.

� The stochastic component is given by

Yi ∼ Bernoulli(yi|πi)

= πyi

i (1− πi)
1−yi

where πi = Pr(Yi = 1).

� The systematic component is given by:

πi =
1

1 + exp(−xiβ)
.

where xi is the vector of k covariates for observation i and β is the vector of coefficients.

Quantities of Interest

The quantities of interest for the network logistic regression are the same as those for the
standard logistic regression.

� The expected values (qi$ev) for the logit.net model are simulations of the predicted
probability of a success:

E(Y ) = πi =
1

1 + exp(−xiβ)
,

given draws of β from its sampling distribution.

� The predicted values (qi$pr) are draws from the Binomial distribution with mean
equal to the simulated expected value πi.

� The first difference (qi$fd) for the network logit model is defined as

FD = Pr(Y = 1|x1)− Pr(Y = 1|x)

Output Values

The output of each Zelig command contains useful information which you may view. For
example, you run z.out <- zelig(y ~ x, model = "logit.net", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by us-
ing z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.
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� From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaikeś Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– bic: the Bayesian Information Criterion (minus twice the maximized log-likelihood
plus the number of coefficients times log n).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE

� From summary(z.out)(as well as from zelig()), you may extract:

– mod.coefficients: the parameter estimates with their associated standard er-
rors, p-values, and t statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from
x and x1.

How to Cite

To cite the logit.net Zelig model:

Skyler J. Cranmer. 2007. ”logit.net: Social Network Logistic Regression for
Dichotomous Dependent Variables” in Kosuke Imai, Gary King, and Olivia
Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/
zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.
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See also

The network logistic regression is part of the netglm package by Skyler J. Cranmer and is
built using some of the functionality of the sna package by Carter T. Butts (Butts and Carley
2001).In addition, advanced users may wish to refer to help(netgamma). Sample data are
fictional.
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12.30 logit.survey: Survey-Weighted Logistic Regres-

sion for Dichotomous Dependent Variables

The survey-weighted logistic regression model is appropriate for survey data obtained using
complex sampling techniques, such as stratified random or cluster sampling (e.g., not simple
random sampling). Like the conventional logistic regression models (see Section 12.22),
survey-weighted logistic regression specifies a dichotomous dependent variable as function of
a set of explanatory variables. The survey-weighted logit model reports estimates of model
parameters identical to conventional logit estimates, but uses information from the survey
design to correct variance estimates.

The logit.survey model accommodates three common types of complex survey data.
Each method listed here requires selecting specific options which are detailed in the “Addi-
tional Inputs” section below.

1. Survey weights: Survey data are often published along with weights for each obser-
vation. For example, if a survey intentionally over-samples a particular type of case,
weights can be used to correct for the over-representation of that type of case in the
dataset. Survey weights come in two forms:

(a) Probability weights report the probability that each case is drawn from the popu-
lation. For each stratum or cluster, this is computed as the number of observations
in the sample drawn from that group divided by the number of observations in
the population in the group.

(b) Sampling weights are the inverse of the probability weights.

2. Strata/cluster identification: A complex survey dataset may include variables that
identify the strata or cluster from which observations are drawn. For stratified random
sampling designs, observations may be nested in different strata. There are two ways
to employ these identifiers:

(a) Use finite population corrections to specify the total number of cases in the stra-
tum or cluster from which each observation was drawn.

(b) For stratified random sampling designs, use the raw strata ids to compute sam-
pling weights from the data.

3. Replication weights: To preserve the anonymity of survey participants, some sur-
veys exclude strata and cluster ids from the public data and instead release only pre-
computed replicate weights.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "logit.survey", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)
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Additional Inputs

In addition to the standard zelig inputs (see Section ??), survey-weighted logistic models
accept the following optional inputs:

1. Datasets that include survey weights:.

� probs: An optional formula or numerical vector specifying each case’s probability
weight, the probability that the case was selected. Probability weights need not
(and, in most cases, will not) sum to one. Cases with lower probability weights
are weighted more heavily in the computation of model coefficients.

� weights: An optional numerical vector specifying each case’s sample weight, the
inverse of the probability that the case was selected. Sampling weights need not
(and, in most cases, will not) sum to one. Cases with higher sampling weights are
weighted more heavily in the computation of model coefficients.

2. Datasets that include strata/cluster identifiers:

� ids: An optional formula or numerical vector identifying the cluster from which
each observation was drawn (ordered from largest level to smallest level). For
survey designs that do not involve cluster sampling, ids defaults to NULL.

� fpc: An optional numerical vector identifying each case’s frequency weight, the
total number of units in the population from which each observation was sampled.

� strata: An optional formula or vector identifying the stratum from which each
observation was sampled. Entries may be numerical, logical, or strings. For survey
designs that do not involve cluster sampling, strata defaults to NULL.

� nest: An optional logical value specifying whether primary sampling unites (PSUs)
have non-unique ids across multiple strata. nest=TRUE is appropriate when PSUs
reuse the same identifiers across strata. Otherwise, nest defaults to FALSE.

� check.strata: An optional input specifying whether to check that clusters are
nested in strata. If check.strata is left at its default, !nest, the check is not
performed. If check.strata is specified as TRUE, the check is carried out.

3. Datasets that include replication weights:

� repweights: A formula or matrix specifying replication weights, numerical vec-
tors of weights used in a process in which the sample is repeatedly re-weighted
and parameters are re-estimated in order to compute the variance of the model
parameters.

� type: A string specifying the type of replication weights being used. This input
is required if replicate weights are specified. The following types of replication
weights are recognized: "BRR", "Fay", "JK1", "JKn", "bootstrap", or "other".
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� weights: An optional vector or formula specifying each case’s sample weight, the
inverse of the probability that the case was selected. If a survey includes both
sampling weights and replicate weights separately for the same survey, both should
be included in the model specification. In these cases, sampling weights are used
to correct potential biases in in the computation of coefficients and replication
weights are used to compute the variance of coefficient estimates.

� combined.weights: An optional logical value that should be specified as TRUE if
the replicate weights include the sampling weights. Otherwise, combined.weights
defaults to FALSE.

� rho: An optional numerical value specifying a shrinkage factor for replicate weights
of type "Fay".

� bootstrap.average: An optional numerical input specifying the number of it-
erations over which replicate weights of type "bootstrap" were averaged. This
input should be left as NULL for "bootstrap" weights that were not were created
by averaging.

� scale: When replicate weights are included, the variance is computed as the sum
of squared deviations of the replicates from their mean. scale is an optional
overall multiplier for the standard deviations.

� rscale: Like scale, rscale specifies an optional vector of replicate-specific mul-
tipliers for the squared deviations used in variance computation.

� fpc: For models in which "JK1", "JKn", or "other" replicates are specified, fpc
is an optional numerical vector (with one entry for each replicate) designating the
replicates’ finite population corrections.

� fpctype: When a finite population correction is included as an fpc input, fpctype
is a required input specifying whether the input to fpc is a sampling fraction
(fpctype="fraction") or a direct correction (fpctype="correction").

� return.replicates: An optional logical value specifying whether the replicates
should be returned as a component of the output. return.replicates defaults
to FALSE.

Examples

1. A dataset that includes survey weights:

Attach the sample data:

> data(api, package = "survey")

Suppose that a dataset included a dichotomous indicator for whether each public school
attends classes year round (yr.rnd), a measure of the percentage of students at each
school who receive subsidized meals (meals), a measure of the percentage of students at
each school who are new to to the school (mobility), and sampling weights computed
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by the survey house (pw). Estimate a model that regresses the year-round schooling
indicator on the meals and mobility variables:

> z.out1 <- zelig(yr.rnd ~ meals + mobility, model = "logit.survey",

+ weights = ~pw, data = apistrat)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, and set a high (80th
percentile) and low (20th percentile) value for “meals”:

> x.low <- setx(z.out1, meals = quantile(apistrat$meals, 0.2))

> x.high <- setx(z.out1, meals = quantile(apistrat$meals, 0.8))

Generate first differences for the effect of high versus low concentrations of children
receiving subsidized meals on the probability of holding school year-round:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

Generate a visual summary of the quantities of interest:

> plot(s.out1)
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2. A dataset that includes strata/cluster identifiers:

Suppose that the survey house that provided the dataset used in the previous example
excluded sampling weights but made other details about the survey design available. A
user can still estimate a model without sampling weights that instead uses inputs that
identify the stratum and/or cluster to which each observation belongs and the size of
the finite population from which each observation was drawn.

Continuing the example above, suppose the survey house drew at random a fixed
number of elementary schools, a fixed number of middle schools, and a fixed number
of high schools. If the variable stype is a vector of characters ("E" for elementary
schools, "M" for middle schools, and "H" for high schools) that identifies the type of
school each case represents and fpc is a numerical vector that identifies for each case
the total number of schools of the same type in the population, then the user could
estimate the following model:

> z.out2 <- zelig(yr.rnd ~ meals + mobility, model = "logit.survey",

+ strata = ~stype, fpc = ~fpc, data = apistrat)
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Summarize the regression output:

> summary(z.out2)

The coefficient estimates for this example are identical to the point estimates in the
first example, when pre-existing sampling weights were used. When sampling weights
are omitted, they are estimated automatically for "logit.survey" models based on
the user-defined description of sampling designs.

Moreover, because the user provided information about the survey design, the standard
error estimates are lower in this example than in the previous example, in which the
user omitted variables pertaining to the details of the complex survey design.

3. A dataset that includes replication weights:

Consider a dataset that includes information for a sample of hospitals about the number
of out-of-hospital cardiac arrests that each hospital treats and the number of patients
who arrive alive at each hospital:

> data(scd, package = "survey")

Survey houses sometimes supply replicate weights (in lieu of details about the survey
design). For the sake of illustrating how replicate weights can be used as inputs in
logit.survey models, create a set of balanced repeated replicate (BRR) weights and
an (artificial) dependent variable to simulate an indicator for whether each hospital
was sued:

> BRRrep <- 2 * cbind(c(1, 0, 1, 0, 1, 0), c(1, 0, 0, 1, 0, 1),

+ c(0, 1, 1, 0, 0, 1), c(0, 1, 0, 1, 1, 0))

> scd$sued <- as.vector(c(0, 0, 0, 1, 1, 1))

Estimate a model that regresses the indicator for hospitals that were sued on the num-
ber of patients who arrive alive in each hospital and the number of cardiac arrests that
each hospital treats, using the BRR replicate weights in BRRrep to compute standard
errors.

> z.out3 <- zelig(formula = sued ~ arrests + alive, model = "logit.survey",

+ repweights = BRRrep, type = "BRR", data = scd)

Summarize the regression coefficients:

> summary(z.out3)

Set alive at its mean and set arrests at its 20th and 80th quantiles:

> x.low <- setx(z.out3, arrests = quantile(scd$arrests, 0.2))

> x.high <- setx(z.out3, arrests = quantile(scd$arrests, 0.8))
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Generate first differences for the effect of high versus low cardiac arrests on the prob-
ability that a hospital will be sued:

> s.out3 <- sim(z.out3, x = x.high, x1 = x.low)

> summary(s.out3)

Generate a visual summary of quantities of interest:

> plot(s.out3)
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Model

Let Yi be the binary dependent variable for observation i which takes the value of either 0
or 1.
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� The stochastic component is given by

Yi ∼ Bernoulli(yi | πi)

= πyi

i (1− πi)
1−yi

where πi = Pr(Yi = 1).

� The systematic component is given by:

πi =
1

1 + exp(−xiβ)
.

where xi is the vector of k explanatory variables for observation i and β is the vector
of coefficients.

Variance

When replicate weights are not used, the variance of the coefficients is estimated as

Σ̂

[
n∑

i=1

(1− πi)

π2
i

(Xi(Yi − µi))
′(Xi(Yi − µi)) + 2

n∑
i=1

n∑
j=i+1

(πij − πiπj)

πiπjπij

(Xi(Yi − µi))
′(Xj(Yj − µj))

]
Σ̂

where πi is the probability of case i being sampled, Xi is a vector of the values of the
explanatory variables for case i, Yi is value of the dependent variable for case i, µ̂i is the
predicted value of the dependent variable for case i based on the linear model estimates,
and Σ̂ is the conventional variance-covariance matrix in a parametric glm. This statistic
is derived from the method for estimating the variance of sums described in Binder (1983)
and the Horvitz-Thompson estimator of the variance of a sum described in Horvitz and
Thompson (1952).

When replicate weights are used, the model is re-estimated for each set of replicate
weights, and the variance of each parameter is estimated by summing the squared deviations
of the replicates from their mean.

Quantities of Interest

� The expected values (qi$ev) for the survey-weighted logit model are simulations of the
predicted probability of a success:

E(Y ) = πi =
1

1 + exp(−xiβ)
,

given draws of β from its sampling distribution.

� The predicted values (qi$pr) are draws from the Binomial distribution with mean
equal to the simulated expected value πi.
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� The first difference (qi$fd) for the survey-weighted logit model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

� The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1) / Pr(Y = 1 | x).

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "logit.survey", data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.
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– fitted.values: the vector of fitted values for the systemic component, πi.

– linear.predictors: the vector of xiβ

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the name of the input data frame.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values
specified in x and x1.

– qi$rr: the simulated risk ratio for the expected probabilities simulated from x

and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

When users estimate logit.survey models with replicate weights in Zelig, an object
called .survey.prob.weights is created in the global environment. Zelig will over-write
any existing object with that name, and users are therefore advised to re-name any object
called .survey.prob.weights before using logit.survey models in Zelig.

How to Cite

To cite the logit.survey Zelig model:
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Nicholas Carnes. 2007. ”logit.survey: Survey-Weighted Logistic Regression for
Dichotomous Dependent Variables” in Kosuke Imai, Gary King, and Olivia
Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/
zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Survey-weighted linear models and the sample data used in the examples above are a part
of the survey package by Thomas Lumley. Users may wish to refer to the help files for
the three functions that Zelig draws upon when estimating survey-weighted models, namely,
help(svyglm), help(svydesign), and help(svrepdesign). The Gamma model is part of
the stats package by Venables and Ripley (2002). Advanced users may wish to refer to
help(glm) and help(family), as well as McCullagh and Nelder (1989).

afterpkgs, echo=FALSE = after<-search() torm<-setdiff(after,before) for (pkg in torm)
detach(pos=match(pkg,search())) @
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12.31 lognorm: Log-Normal Regression for Duration

Dependent Variables

The log-normal model describes an event’s duration, the dependent variable, as a function
of a set of explanatory variables. The log-normal model may take time censored dependent
variables, and allows the hazard rate to increase and decrease.

Syntax

> z.out <- zelig(Surv(Y, C) ~ X, model = "lognorm", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Log-normal models require that the dependent variable be in the form Surv(Y, C), where Y

and C are vectors of length n. For each observation i in 1, . . . , n, the value yi is the duration
(lifetime, for example) of each subject, and the associated ci is a binary variable such that
ci = 1 if the duration is not censored (e.g., the subject dies during the study) or ci = 0 if the
duration is censored (e.g., the subject is still alive at the end of the study). If ci is omitted,
all Y are assumed to be completed; that is, time defaults to 1 for all observations.

Input Values

In addition to the standard inputs, zelig() takes the following additional options for log-
normal regression:

� robust: defaults to FALSE. If TRUE, zelig() computes robust standard errors based
on sandwich estimators (see Huber (1981) and White (1980)) based on the options in
cluster.

� cluster: if robust = TRUE, you may select a variable to define groups of correlated
observations. Let x3 be a variable that consists of either discrete numeric values,
character strings, or factors that define strata. Then

> z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3",

model = "exp", data = mydata)

means that the observations can be correlated within the strata defined by the variable
x3, and that robust standard errors should be calculated according to those clusters. If
robust = TRUE but cluster is not specified, zelig() assumes that each observation
falls into its own cluster.
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Example

Attach the sample data:

> data(coalition)

Estimate the model:

> z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2, model = "lognorm",

+ data = coalition)

View the regression output:

> summary(z.out)

Set the baseline values (with the ruling coalition in the minority) and the alternative values
(with the ruling coalition in the majority) for X:

> x.low <- setx(z.out, numst2 = 0)

> x.high <- setx(z.out, numst2 = 1)

Simulate expected values (qi$ev) and first differences (qi$fd):

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

> plot(s.out)
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Model

Let Y ∗
i be the survival time for observation i with the density function f(y) and the corre-

sponding distribution function F (t) =
∫ t

0
f(y)dy. This variable might be censored for some

observations at a fixed time yc such that the fully observed dependent variable, Yi, is defined
as

Yi =

{
Y ∗

i if Y ∗
i ≤ yc

yc if Y ∗
i > yc

� The stochastic component is described by the distribution of the partially observed
variable, Y ∗. For the lognormal model, there are two equivalent representations:

Y ∗
i ∼ LogNormal(µi, σ

2) or log(Y ∗
i ) ∼ Normal(µi, σ

2)

where the parameters µi and σ2 are the mean and variance of the Normal distribution.
(Note that the output from zelig() parameterizes scale= σ.)
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In addition, survival models like the lognormal have three additional properties. The
hazard function h(t) measures the probability of not surviving past time t given survival
up to t. In general, the hazard function is equal to f(t)/S(t) where the survival function
S(t) = 1 −

∫ t

0
f(s)ds represents the fraction still surviving at time t. The cumulative

hazard function H(t) describes the probability of dying before time t. In general,
H(t) =

∫ t

0
h(s)ds = − logS(t). In the case of the lognormal model,

h(t) =
1√

2π σt S(t)
exp

{
− 1

2σ2
(log λt)2

}
S(t) = 1− Φ

(
1

σ
log λt

)
H(t) = − log

{
1− Φ

(
1

σ
log λt

)}
where Φ(·) is the cumulative density function for the Normal distribution.

� The systematic component is described as:

µi = xiβ.

Quantities of Interest

� The expected values (qi$ev) for the lognormal model are simulations of the expected
duration:

E(Y ) = exp

(
µi +

1

2
σ2

)
,

given draws of β and σ from their sampling distributions.

� The predicted value is a draw from the log-normal distribution given simulations of
the parameters (λi, σ).

� The first difference (qi$fd) is

FD = E(Y | x1)− E(Y | x).

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]},

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. When Yi(ti = 1) is censored rather than observed, we replace it with
a simulation from the model given available knowledge of the censoring process. Vari-
ation in the simulations is due to two factors: uncertainty in the imputation process
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for censored y∗i and uncertainty in simulating E[Yi(ti = 0)], the counterfactual ex-
pected value of Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− ̂Yi(ti = 0)},

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. When Yi(ti = 1) is censored rather than observed, we replace it with a
simulation from the model given available knowledge of the censoring process. Variation
in the simulations are due to two factors: uncertainty in the imputation process for

censored y∗i and uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted value
of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(Surv(Y, C) ~ X, model = "lognorm", data), then
you may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– icoef: parameter estimates for the intercept and σ.

– var: Variance-covariance matrix.

– loglik: Vector containing the log-likelihood for the model and intercept only
(respectively).

– linear.predictors: the vector of xiβ.

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

� Most of this may be conveniently summarized using summary(z.out). From summary(z.out),
you may additionally extract:

– table: the parameter estimates with their associated standard errors, p-values,
and t-statistics.
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� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution defined by
(λi, σ).

– qi$fd: the simulated first differences between the simulated expected values for
x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the lognorm Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”lognorm: Log-Normal Regression
for Duration Dependent Variables” in Kosuke Imai, Gary King, and Olivia
Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/
zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The exponential function is part of the survival library by by Terry Therneau, ported to R
by Thomas Lumley. Advanced users may wish to refer to help(survfit) in the survival
library, and Venables and Ripley (2002).Sample data are from King et al. (1990).
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12.32 ls: Least Squares Regression for Continuous De-

pendent Variables

Use least squares regression analysis to estimate the best linear predictor for the specified
dependent variables.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "ls", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for least
squares regression:

� robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard
errors based on sandwich estimators (see Zeileis (2004), Huber (1981), and White
(1980)). The default type of robust standard error is heteroskedastic consistent (HC),
not heteroskedastic and autocorrelation consistent (HAC).

In addition, robust may be a list with the following options:

– method: choose from

* "vcovHC": (the default if robust = TRUE), HC standard errors.

* "vcovHAC": HAC standard errors without weights.

* "kernHAC": HAC standard errors using the weights given in Andrews (1991).

* "weave": HAC standard errors using the weights given in Lumley and Hea-
gerty (1999).

– order.by: only applies to the HAC methods above. Defaults to NULL (the ob-
servations are chronologically ordered as in the original data). Optionally, you
may specify a time index (either as order.by = z, where z exists outside the
data frame; or as order.by = ~z, where z is a variable in the data frame). The
observations are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method. See the
sandwich library and Zeileis (2004) for more options.

Examples

1. Basic Example with First Differences

Attach sample data:
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> data(macro)

Estimate model:

> z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "ls", data = macro)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, with high (80th per-
centile) and low (20th percentile) values for the trade variable:

> x.high <- setx(z.out1, trade = quantile(macro$trade, 0.8))

> x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2))

Generate first differences for the effect of high versus low trade on GDP:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

> plot(s.out1)
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2. Using Dummy Variables

Estimate a model with fixed effects for each country (see Section 2 for help with dummy
variables). Note that you do not need to create dummy variables, as the program will
automatically parse the unique values in the selected variable into discrete levels.

> z.out2 <- zelig(unem ~ gdp + trade + capmob + as.factor(country),

+ model = "ls", data = macro)

Set values for the explanatory variables, using the default mean/mode values, with
country set to the United States and Japan, respectively:

> x.US <- setx(z.out2, country = "United States")

> x.Japan <- setx(z.out2, country = "Japan")

Simulate quantities of interest:

> s.out2 <- sim(z.out2, x = x.US, x1 = x.Japan)

> plot(s.out2)
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3. Multiple responses (least squares regression will be fitted separately to each dependent
variable)

Two responses for data set macro:
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> z.out3 <- zelig(cbind(unem, gdp) ~ capmob + trade, model = "ls",

+ data = macro)

> summary(z.out3)

Set values for the explanatory variables, using the default mean/mode values, with
country set to the United States and Japan, respectively:

> x.US <- setx(z.out3, country = "United States")

> x.Japan <- setx(z.out3, country = "Japan")

Simulate quantities of interest:

> s.out3 <- sim(z.out3, x = x.US, x1 = x.Japan)

Summary

> summary(s.out3)

> plot(s.out3)
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Model

� The stochastic component is described by a density with mean µi and the common
variance σ2

Yi ∼ f(yi | µi, σ
2).

� The systematic component models the conditional mean as

µi = xiβ

where xi is the vector of covariates, and β is the vector of coefficients.

The least squares estimator is the best linear predictor of a dependent variable given
xi, and minimizes the sum of squared residuals,

∑n
i=1(Yi − xiβ)2.

Quantities of Interest

� The expected value (qi$ev) is the mean of simulations from the stochastic component,

E(Y ) = xiβ,

given a draw of β from its sampling distribution.

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "ls", data), then you may examine
the available information in z.out by using names(z.out), see the coefficients by us-
ing z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.
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– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: fitted values.

– df.residual: the residual degrees of freedom.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

β̂ =

(
n∑

i=1

x′ixi

)−1∑
xiyi

– sigma: the square root of the estimate variance of the random error e:

σ̂ =

∑
(Yi − xiβ̂)2

n− k

– r.squared: the fraction of the variance explained by the model.

R2 = 1−
∑

(Yi − xiβ̂)2∑
(yi − ȳ)2

– adj.r.squared: the above R2 statistic, penalizing for an increased number of
explanatory variables.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences (or differences in expected values) for the
specified values of x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the ls Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”ls: Least Squares Regression for
Continuous Dependent Variables” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig
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To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The least squares regression is part of the stats package by William N. Venables and Brian D.
Ripley (Venables and Ripley 2002).In addition, advanced users may wish to refer to help(lm)
and help(lm.fit).Robust standard errors are implemented via the sandwich package by
Achim Zeileis (Zeileis 2004).Sample data are from King et al. (2000).

330

http://GKing.harvard.edu/zelig


12.33 ls.mixed: Mixed effects Linear Regression

Use multi-level linear regression if you have covariates that are grouped according to one or
more classification factors and a continuous dependent variable.

While generally called multi-level models in the social sciences, this class of models is often
referred to as mixed-effects models in the statistics literature and as hierarchical models in a
Bayesian setting. This general class of models consists of linear models that are expressed as
a function of both fixed effects, parameters corresponding to an entire population or certain
repeatable levels of experimental factors, and random effects, parameters corresponding to
individual experimental units drawn at random from a population.

Syntax

z.out <- zelig(formula= y ~ x1 + x2 + tag(z1 + z2 | g),

data=mydata, model="lm.multi")

z.out <- zelig(formula= list(mu=y ~ xl + x2 + tag(z1, gamma | g),

gamma= ~ tag(w1 + w2 | g)), data=mydata, model="lm.multi")

Inputs

zelig() takes the following arguments for multi:

� formula: a two-sided linear formula object describing the systematic component of
the model, with the response on the left of a ˜ operator and the fixed effects terms,
separated by + operators, on the right. Any random effects terms are included with
the notation tag(z1 + ... + zn | g) with z1 + ... + zn specifying the model
for the random effects and g the grouping structure. Random intercept terms are
included with the notation tag(1 | g).
Alternatively, formula may be a list where the first entry, mu, is a two-sided linear
formula object describing the systematic component of the model, with the repsonse
on the left of a˜operator and the fixed effects terms, separated by + operators, on the
right. Any random effects terms are included with the notation tag(z1, gamma | g)

with z1 specifying the individual level model for the random effects, g the grouping
structure and gamma references the second equation in the list. The gamma equation is
one-sided linear formula object with the group level model for the random effects on
the right side of a˜operator. The model is specified with the notation tag(w1 + ...

+ wn | g) with w1 + ... + wn specifying the group level model and g the grouping
structure.

Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:
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� data: An optional data frame containing the variables named in formula. By default,
the variables are taken from the environment from which zelig() is called.

� family: A GLM family, see glm and family in the stats package. If family is missing
then a linear mixed model is fit; otherwise a generalized linear mixed model is fit. In
the later case only gaussian family with "log" link is supported at the moment.

� na.action: A function that indicates what should happen when the data contain NAs.
The default action (na.fail) causes zelig() to print an error message and terminate
if there are any incomplete observations.

Additionally, users may wish to refer to lmer in the package lme4 for more information,
including control parameters for the estimation algorithm and their defaults.

Examples

1. Basic Example with First Differences

Attach sample data:

> data(voteincome)

Estimate model:

> z.out1 <- zelig(income ~ education + age + female + tag(1 | state),

+ data = voteincome, model = "ls.mixed")

Summarize regression coefficients and estimated variance of random effects:

> summary(z.out1)

Set explanatory variables to their default values, with high (80th percentile) and low
(20th percentile) values for education:

> x.high <- setx(z.out1, education = quantile(voteincome$education,

+ 0.8))

> x.low <- setx(z.out1, education = quantile(voteincome$education,

+ 0.2))

Generate first differences for the effect of high versus low education on income:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)
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> plot(s.out1)
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Mixed effects linear regression model

Let Yij be the continuous dependent variable, realized for observation j in group i as yij, for
i = 1, . . . ,M , j = 1, . . . , ni.

� The stochastic component is described by a univariate normal model with a vector of
means µij and scalar variance σ2.

Yij ∼ Normal(yij|µij, σ
2)

� The q-dimensional vector of random effects, bi, is restricted to be mean zero, and
therefore is completely characterized by the variance covarance matrix Ψ, a (q × q)
symmetric positive semi-definite matrix.

bi ∼ Normal(0,Ψ)
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� The systematic component is
µij ≡ Xijβ + Zijbi

where Xij is the (ni × p ×M) array of known fixed effects explanatory variables, β
is the p-dimensional vector of fixed effects coefficients, Zij is the (ni × q ×M) array
of known random effects explanatory variables and bi is the q-dimensional vector of
random effects.

Quantities of Interest

� The predicted values (qi$pr) are draws from the normal distribution defined by mean
µij and variance σ2,

µij = Xijβ + Zijbi

given Xij and Zij and simulations of β and bi from their posterior distributions. The
estimated variance covariance matrices are taken as correct and are themselves not
simulated.

� The expected values (qi$ev) are averaged over the stochastic components and are given
by

E(Yij|Xij) = Xijβ.

� The first difference (qi$fd) is given by the difference in expected values, conditional
on Xij and X ′

ij, representing different values of the explanatory variables.

FD(Yij|Xij, X
′
ij) = E(Yij|Xij)− E(Yij|X ′

ij)

� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− ̂Yij(tij = 0)},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control
(tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
Yij(tij = 0), the counterfactual predicted value of Yij for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to tij = 0.

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− E[Yij(tij = 0)]},
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where tij is a binary explanatory variable defining the treatment (tij = 1) and con-
trol (tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
E[Yij(tij = 0)], the counterfactual expected value of Yij for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to tij = 0.

� If "log" link is used, expected values are computed as above and then exponentiated,
while predicted values are draws from the log-normal distribution whose logarithm has
mean and variance equal to µij and σ2, respectively.

Output Values

The output of each Zelig command contains useful information which you may view. You
may examine the available information in z.out by using slotNames(z.out), see the fixed
effect coefficients by using summary(z.out)@coefs, and a default summary of information
through summary(z.out). Other elements available through the operator are listed below.

� From the zelig() output stored in summary(z.out), you may extract:

– fixef: numeric vector containing the conditional estimates of the fixed effects.

– ranef: numeric vector containing the conditional modes of the random effects.

– frame: the model frame for the model.

� From the sim() output stored in s.out, you may extract quantities of interest stored
in a data frame:

– qi$pr: the simulated predicted values drawn from the distributions defined by
the expected values.

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences in the expected values for the values specified
in x and x1.

– qi$ate.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

– qi$ate.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the ls.mixed Zelig model:

Delia Bailey and Ferdinand Alimadhi. 2007. ”ls.mixed: Mixed effects linear
model” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s Sta-
tistical Software,”http://gking.harvard.edu/zelig
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To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Mixed effects linear regression is part of lme4 package by Douglas M. Bates (Bates 2007).
For a detailed discussion of mixed-effects models, please see ?
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12.34 ls.net: Network Least Squares Regression for

Continuous Proximity Matrix Dependent Vari-

ables

Use network least squares regression analysis to estimate the best linear predictor when the
dependent variable is a continuously-valued proximity matrix (a.k.a. sociomatrices, adjacency
matrices, or matrix representations of directed graphs).

Syntax

> z.out <- zelig(y ~ x1 + x2, model = "ls.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Examples

1. Basic Example with First Differences

Load sample data and format it for social networkx analysis:

> data(sna.ex)

Estimate model:

> z.out <- zelig(Var1 ~ Var2 + Var3 + Var4, model = "ls.net", data = sna.ex)

Summarize regression results:

> summary(z.out)

Set explanatory variables to their default (mean/mode) values, with high (80th per-
centile) and low (20th percentile) for the second explanatory variable (Var3).

> x.high <- setx(z.out, Var3 = quantile(sna.ex$Var3, 0.8))

> x.low <- setx(z.out, Var3 = quantile(sna.ex$Var3, 0.2))

Generate first differences for the effect of high versus low values of Var3 on the outcome
variable.

> try(s.out <- sim(z.out, x = x.high, x1 = x.low))

> try(summary(s.out))

> plot(s.out)
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Model

The ls.net model performs a least squares regression of the sociomatrix Y, a m×m matrix
representing network ties, on a set of sociomatrices X. This network regression model is
a directly analogue to standard least squares regression element-wise on the appropriately
vectorized matrices. Sociomatrices are vectorized by creating Y , anm2×1 vector to represent
the sociomatrix. The vectorization which produces the Y vector from the Y matrix is
preformed by simple row-concatenation of Y. For example if Y is a 15× 15 matrix, the Y1,1

element is the first element of Y , and the Y21 element is the second element of Y and so on.
Once the input matrices are vectorized, standard least squares regression is performed. As
such:

� The stochastic component is described by a density with mean µi and the common
variance σ2

Yi ∼ f(yi|µi, σ
2).
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� The systematic component models the conditional mean as

µi = xiβ

where xi is the vector of covariates, and β is the vector of coefficients.

The least squares estimator is the best linear predictor of a dependent variable given xi, and
minimizes the sum of squared errors

∑n
i=1(Yi − xiβ)2.

Quantities of Interest

The quantities of interest for the network least squares regression are the same as those for
the standard least squares regression.

� The expected value (qi$ev) is the mean of simulations from the stochastic component,

E(Y ) = xiβ,

given a draw of β from its sampling distribution.

� The first difference (qi$fd) is:

FD = E(Y |x1)− E(Y |x)

Output Values

The output of each Zelig command contains useful information which you may view. For
example, you run z.out <- zelig(y x, model="ls.net", data), then you may exam-
ine the available information in z.out by using names(z.out), see the coefficients by us-
ing z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– df.residual: the residual degrees of freedom.

– zelig.data: the input data frame if save.data = TRUE

� From summary(z.out), you may extract:

– mod.coefficients: the parameter estimates with their associated standard er-
rors, p-values, and t statistics.

β̂ =

(
n∑

i=1

x′ixi

)−1∑
xiyi
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– sigma: the square root of the estimate variance of the random error ε:

σ̂ =

∑
(Yi − xiβ̂)2

n− k

– r.squared: the fraction of the variance explained by the model.

R2 = 1−
∑

(Yi − xiβ̂)2∑
(yi − ȳ)2

– adj.r.squared: the above R2 statistic, penalizing for an increased number of
explanatory variables.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences (or differences in expected values) for the
specified values of x and x1.

How to Cite

To cite the ls.net Zelig model:

Skyler J. Cranmer. 2007. ”ls.net: Social Network Least Squares Regression for
Continuous Dependent Variables” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The network least squares regression is part of the sna package by Carter T. Butts (Butts
and Carley 2001).In addition, advanced users may wish to refer to help(netlm).
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12.35 mlogit: Multinomial Logistic Regression for De-

pendent Variables with Unordered Categorical

Values

Use the multinomial logit distribution to model unordered categorical variables. The depen-
dent variable may be in the format of either character strings or integer values. See for a
Bayesian version of this model.

Syntax

> z.out <- zelig(as.factor(Y) ~ X1 + X2, model = "mlogit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Input Values

If the user wishes to use the same formula across all levels, then formula <- as.factor(Y) ~ X1 + X2

may be used. If the user wants to use different formula for each level then the following syntax
should be used:

formulae <- list(list(id(Y, "apples")~ X1,

id(Y, "bananas")~ X1 + X2)

where Y above is supposed to be a factor variable with levels apples,bananas,oranges. By
default, oranges is the last level and omitted. (You cannot specify a different base level at
this time.) For J equations, there must be J + 1 levels.

Examples

1. The same formula for each level

Load the sample data:

> data(mexico)

Estimate the empirical model:

> z.out1 <- zelig(as.factor(vote88) ~ pristr + othcok + othsocok,

+ model = "mlogit", data = mexico)

Set the explanatory variables to their default values, with pristr (for the strength
of the PRI) equal to 1 (weak) in the baseline values, and equal to 3 (strong) in the
alternative values:

> x.weak <- setx(z.out1, pristr = 1)

> x.strong <- setx(z.out1, pristr = 3)
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Generate simulated predicted probabilities qi$ev and differences in the predicted prob-
abilities qi$fd:

> s.out1 <- sim(z.out1, x = x.strong, x1 = x.weak)

> summary(s.out1)

Generate simulated predicted probabilities qi$ev for the alternative values:

> ev.weak <- s.out1$qi$ev + s.out1$qi$fd

Plot the differences in the predicted probabilities.

> library(vcd)

> ternaryplot(x = s.out1$qi$ev, pch = ".", col = "blue", main = "1988 Mexican Presidential Election")
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2. Different formula for each level

Estimate the empirical model:

> z.out2 <- zelig(list(id(vote88, "1") ~ pristr + othcok, id(vote88,

+ "2") ~ othsocok), model = "mlogit", data = mexico)

Set the explanatory variables to their default values, with pristr (for the strength
of the PRI) equal to 1 (weak) in the baseline values, and equal to 3 (strong) in the
alternative values:

> x.weak <- setx(z.out2, pristr = 1)

> x.strong <- setx(z.out2, pristr = 3)

Generate simulated predicted probabilities qi$ev and differences in the predicted prob-
abilities qi$fd:

> s.out1 <- sim(z.out2, x = x.strong, x1 = x.weak)

> summary(s.out1)

Generate simulated predicted probabilities qi$ev for the alternative values:

> ev.weak <- s.out1$qi$ev + s.out1$qi$fd

Using the vcd package, plot the differences in the predicted probabilities.

> ternaryplot(s.out1$qi$ev, pch = ".", col = "blue", main = "1988 Mexican Presidential Election")
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1988 Mexican Presidential Election
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Model

Let Yi be the unordered categorical dependent variable that takes one of the values from 1
to J , where J is the total number of categories.

� The stochastic component is given by

Yi ∼ Multinomial(yi | πij),

where πij = Pr(Yi = j) for j = 1, . . . , J .

� The systemic component is given by:

πij =
exp(xiβj)∑J

k=1 exp(xiβk)
,

where xi is the vector of explanatory variables for observation i, and βj is the vector
of coefficients for category j.
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Quantities of Interest

� The expected value (qi$ev) is the predicted probability for each category:

E(Y ) = πij =
exp(xiβj)∑J

k=1 exp(xiβk)
.

� The predicted value (qi$pr) is a draw from the multinomial distribution defined by
the predicted probabilities.

� The first difference in predicted probabilities (qi$fd), for each category is given by:

FDj = Pr(Y = j | x1)− Pr(Y = j | x) for j = 1, . . . , J.

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1

nj

nj∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of treated observations in category j.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1

nj

nj∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of treated observations in category j.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "mlogit", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: the named vector of coefficients.

– fitted.values: an n× J matrix of the in-sample fitted values.
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– predictors: an n× (J − 1) matrix of the linear predictors xiβj.

– residuals: an n× (J − 1) matrix of the residuals.

– df.residual: the residual degrees of freedom.

– df.total: the total degrees of freedom.

– rss: the residual sum of squares.

– y: an n× J matrix of the dependent variables.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coef3: a table of the coefficients with their associated standard errors and t-
statistics.

– cov.unscaled: the variance-covariance matrix.

– pearson.resid: an n× (m− 1) matrix of the Pearson residuals.

� From the sim() output object s.out, you may extract quantities of interest arranged
as arrays. Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x, indexed
by simulation × quantity × x-observation (for more than one x-observation).

– qi$pr: the simulated predicted values drawn from the distribution defined by the
expected probabilities, indexed by simulation × x-observation.

– qi$fd: the simulated first difference in the predicted probabilities for the values
specified in x and x1, indexed by simulation × quantity × x-observation (for more
than one x-observation).

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models,

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the mlogit Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”mlogit: Multinomial Logis-
tic Regression for Dependent Variables with Unordered Categorical Values”
in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s Statistical
Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:
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Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The multinomial logit function is part of the VGAM package by Thomas Yee (Yee and Hastie
2003). In addition, advanced users may wish to refer to help(vglm) in the VGAM library.
Additional documentation is available at http://www.stat.auckland.ac.nz/˜ yee.Sample data
are from King et al. (2000).
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12.36 mlogit.bayes: Bayesian Multinomial Logistic Re-

gression

Use Bayesian multinomial logistic regression to model unordered categorical variables. The
dependent variable may be in the format of either character strings or integer values. The
model is estimated via a random walk Metropolis algorithm or a slice sampler. See Sec-
tion 12.35 for the maximum-likelihood estimation of this model.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "mlogit.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

zelig() accepts the following arguments for mlogit.bayes:

� baseline: either a character string or numeric value (equal to one of the observed
values in the dependent variable) specifying a baseline category. The default value is
NA which sets the baseline to the first alphabetical or numerical unique value of the
dependent variable.

The model accepts the following additional arguments to monitor the Markov chains:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).

� mcmc: number of the MCMC iterations after burnin (defaults to 10,000).

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� mcmc.method: either "MH" or "slice", specifying whether to use Metropolis Algorithm
or slice sampler. The default value is "MH".

� tune: tuning parameter for the Metropolis-Hasting step, either a scalar or a numeric
vector (for k coefficients, enter a k vector). The tuning parameter should be set such
that the acceptance rate is satisfactory (between 0.2 and 0.5). The default value is 1.1.

� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed of 12345.
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� beta.start: starting values for the Markov chain, either a scalar or a vector (for
k coefficients, enter a k vector). The default is NA where the maximum likelihood
estimates are used as the starting values.

Use the following arguments to specify the priors for the model:

� b0: prior mean for the coefficients, either a scalar or vector. If a scalar, that value will
be the prior mean for all the coefficients. The default is 0.

� B0: prior precision parameter for the coefficients, either a square matrix with the
dimensions equal to the number of coefficients or a scalar. If a scalar, that value times
an identity matrix will be the prior precision parameter. The default is 0 which leads
to an improper prior.

Zelig users may wish to refer to help(MCMCmnl) for more information.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

349



Examples

1. Basic Example
Attaching the sample dataset:

> data(mexico)

Estimating multinomial logistics regression using mlogit.bayes:

> z.out <- zelig(vote88 ~ pristr + othcok + othsocok, model = "mlogit.bayes",

+ data = mexico)

Checking for convergence before summarizing the estimates:

> heidel.diag(z.out$coefficients)

> raftery.diag(z.out$coefficients)

> summary(z.out)

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given x.out.

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

2. Simulating First Differences
Estimating the first difference (and risk ratio) in the probabilities of voting different
candidates when pristr (the strength of the PRI) is set to be weak (equal to 1) versus
strong (equal to 3) while all the other variables held at their default values.

> x.weak <- setx(z.out, pristr = 1)

> x.strong <- setx(z.out, pristr = 3)

> s.out2 <- sim(z.out, x = x.strong, x1 = x.weak)

> summary(s.out2)
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Model

Let Yi be the (unordered) categorical dependent variable for observation i which takes an
integer values j = 1, . . . , J .

� The stochastic component is given by:

Yi ∼ Multinomial(Yi | πij).

where πij = Pr(Yi = j) for j = 1, . . . , J .

� The systematic component is given by

πij =
exp(xiβj)∑J

k=1 exp(xiβk)
, for j = 1, . . . , J − 1,

where xi is the vector of k explanatory variables for observation i and βj is the vector
of coefficient for category j. Category J is assumed to be the baseline category.

� The prior for β is given by

βj ∼ Normalk
(
b0, B

−1
0

)
for j = 1, . . . , J − 1,

where b0 is the vector of means for the k explanatory variables and B0 is the k × k
precision matrix (the inverse of a variance-covariance matrix).

Quantities of Interest

� The expected values (qi$ev) for the multinomial logistics regression model are the
predicted probability of belonging to each category:

Pr(Yi = j) = πij =
exp(xiβj)∑J

k=1 exp(xJβk)
, for j = 1, . . . , J − 1,

and

Pr(Yi = J) = 1−
J−1∑
j=1

Pr(Yi = j)

given the posterior draws of βj for all categories from the MCMC iterations.

� The predicted values (qi$pr) are the draws of Yi from a multinomial distribution whose
parameters are the expected values(qi$ev) computed based on the posterior draws of
β from the MCMC iterations.
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� The first difference (qi$fd) in category j for the multinomial logistic model is defined
as

FDj = Pr(Yi = j | X1)− Pr(Yi = j | X).

� The risk ratio (qi$rr) in category j is defined as

RRj = Pr(Yi = j | X1) / Pr(Yi = j | X).

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group in category j is

1

nj

nj∑
i:ti=1

[Yi(ti = 1)− E[Yi(ti = 0)]],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of treated observations in category j.

� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group in category j is

1

nj

nj∑
i:ti=1

[Yi(ti = 1)− ̂Yi(ti = 0)],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of treated observations in category j.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(y ~ x, model = "mlogit.bayes", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated coefficients
β for each category except the baseline category.

– zelig.data: the input data frame if save.data = TRUE.
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– seed: the random seed used in the model.

� From the sim() output object s.out:

– qi$ev: the simulated expected values(probabilities) of each of the J categories
given the specified values of x.

– qi$pr: the simulated predicted values drawn from the multinomial distribution
defined by the expected values(qi$ev) given the specified values of x.

– qi$fd: the simulated first difference in the expected values of each of the J
categories for the values specified in x and x1.

– qi$rr: the simulated risk ratio for the expected values of each of the J categories
simulated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the mlogit.bayes Zelig model:

Ben Goodrich and Ying Lu. 2007. ”mlogit.bayes: Bayesian Multinomial Logis-
tic Regression for Dependent Variables with Unordered Categorical Values”
in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s Statistical
Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Bayesian logistic regression is part of the MCMCpack library by Andrew D. Martin and
Kevin M. Quinn (Martin and Quinn 2005). The convergence diagnostics are part of the
CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines (Plummer
et al. 2005).
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12.37 mloglm: Multinomial Log-Linear Regression for

Contingency Table Models

Log-linear models are for modeling contingency tables, the cross-tabulation of discrete individual-
level variables. Contingency table models take as the “unit of analysis” for the purpose of the
statistical procedure, the cell of a contingency table. The “dependent variable” is then the
count within each cell, and the explanatory variables indicate what categories the cells fall
into. These models are highly efficient computationally since there are so few“observations,”
but they are asymptotically equivalent to logistic regression models run on the unpacked
individual level data.

Syntax

> estimate <- zelig(Y ~ X1 + X2, model = "mloglm", data = mydata)

> Xval <- setx(estimate)

> results <- sim(estimate, x = Xval)

Examples

Model

Quantities of Interest

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run estimate <- zelig(y ~ x, model = "mloglm", data), then you
may examine the available information in estimate by using names(estimate), see the
coefficients by using estimate$coefficients, and a default summary of information
through summary(estimate). Other elements available through the $ operator are listed
below.

� From the zelig() output stored in estimate, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– deviance: the residual deviance.

– fitted.values: the n×m matrix of in-sample fitted values.

– df.residual: the residual degrees of freedom.

– edf: the effective degrees of freedom.

– AIC: Akaike’s An Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– Hessian: the Hessian matrix.
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� From summary(estimate), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics. covariances.

� From the sim() output stored in results:

– qi$ev: the simulated expected (or fitted values) for the specified values of x.

– qi$rd: the difference in the expected values (or first difference) for the values
specified in x and x1.

How to Cite

To cite the mloglm Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”mloglm: Multinomial Log-Linear
Regression for Contingency Table Models” in Kosuke Imai, Gary King, and
Olivia Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.
edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The multinomial logit model is part of the nnet library by Brian D. Ripley. (?).Advanced
users may wish to refer to the R-help for help(multinom) and ?
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12.38 negbin: Negative Binomial Regression for Event

Count Dependent Variables

Use the negative binomial regression if you have a count of events for each observation of
your dependent variable. The negative binomial model is frequently used to estimate over-
dispersed event count models.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "negbin", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for nega-
tive binomial regression:

� robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard
errors via the sandwich package (see Zeileis (2004)). The default type of robust stan-
dard error is heteroskedastic and autocorrelation consistent (HAC), and assumes that
observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

* "vcovHAC": (default if robust = TRUE) HAC standard errors.

* "kernHAC": HAC standard errors using the weights given in Andrews (1991).

* "weave": HAC standard errors using the weights given in Lumley and Hea-
gerty (1999).

– order.by: defaults to NULL (the observations are chronologically ordered as in the
original data). Optionally, you may specify a vector of weights (either as order.by
= z, where z exists outside the data frame; or as order.by = ~z, where z is a
variable in the data frame). The observations are chronologically ordered by the
size of z.

– ...: additional options passed to the functions specified in method. See the
sandwich library and Zeileis (2004) for more options.

Example

Load sample data:

> data(sanction)
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Estimate the model:

> z.out <- zelig(num ~ target + coop, model = "negbin", data = sanction)

> summary(z.out)

Set values for the explanatory variables to their default mean values:

> x.out <- setx(z.out)

Simulate fitted values:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)
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Model

Let Yi be the number of independent events that occur during a fixed time period. This
variable can take any non-negative integer value.

� The negative binomial distribution is derived by letting the mean of the Poisson distri-
bution vary according to a fixed parameter ζ given by the Gamma distribution. The
stochastic component is given by

Yi | ζi ∼ Poisson(ζiµi),

ζi ∼ 1

θ
Gamma(θ).

The marginal distribution of Yi is then the negative binomial with mean µi and variance
µi + µ2

i /θ:

Yi ∼ NegBin(µi, θ),

=
Γ(θ + yi)

y! Γ(θ)

µyi

i θ
θ

(µi + θ)θ+yi
,

where θ is the systematic parameter of the Gamma distribution modeling ζi.

� The systematic component is given by

µi = exp(xiβ)

where xi is the vector of k explanatory variables and β is the vector of coefficients.

Quantities of Interest

� The expected values (qi$ev) are simulations of the mean of the stochastic component.
Thus,

E(Y ) = µi = exp(xiβ),

given simulations of β.

� The predicted value (qi$pr) drawn from the distribution defined by the set of param-
eters (µi, θ).

� The first difference (qi$fd) is

FD = E(Y |x1)− E(Y | x)

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,
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where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "negbin", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– theta: the maximum likelihood estimate for the stochastic parameter θ.

– SE.theta: the standard error for theta.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: a vector of the fitted values for the systemic component λ.

– linear.predictors: a vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:
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– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values given the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution defined by
(µi, θ).

– qi$fd: the simulated first differences in the simulated expected values given the
specified values of x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the negbin Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”negbin: Negative Binomial
Regression for Event Count Dependent Variables” in Kosuke Imai, Gary
King, and Olivia Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.
harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The negative binomial model is part of the MASS package by William N. Venable and Brian
D. Ripley (Venables and Ripley 2002). Advanced users may wish to refer to help(glm.nb) as
well as McCullagh and Nelder (1989). Robust standard errors are implemented via sandwich
package by Achim Zeileis (Zeileis 2004).Sample data are from Martin (1992).
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12.39 normal: Normal Regression for Continuous De-

pendent Variables

The Normal regression model is a close variant of the more standard least squares regression
model (see Section 12.32). Both models specify a continuous dependent variable as a linear
function of a set of explanatory variables. The Normal model reports maximum likelihood
(rather than least squares) estimates. The two models differ only in their estimate for the
stochastic parameter σ.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "normal", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for normal
regression:

� robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard
errors via the sandwich package (see Zeileis (2004)). The default type of robust stan-
dard error is heteroskedastic and autocorrelation consistent (HAC), and assumes that
observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

* "vcovHAC": (default if robust = TRUE) HAC standard errors.

* "kernHAC": HAC standard errors using the weights given in Andrews (1991).

* "weave": HAC standard errors using the weights given in Lumley and Hea-
gerty (1999).

– order.by: defaults to NULL (the observations are chronologically ordered as in the
original data). Optionally, you may specify a vector of weights (either as order.by
= z, where z exists outside the data frame; or as order.by = ~z, where z is a
variable in the data frame). The observations are chronologically ordered by the
size of z.

– ...: additional options passed to the functions specified in method. See the
sandwich library and Zeileis (2004) for more options.

Examples

1. Basic Example with First Differences

Attach sample data:
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> data(macro)

Estimate model:

> z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "normal",

+ data = macro)

Summarize of regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, with high (80th per-
centile) and low (20th percentile) values for trade:

> x.high <- setx(z.out1, trade = quantile(macro$trade, 0.8))

> x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2))

Generate first differences for the effect of high versus low trade on GDP:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

A visual summary of quantities of interest:

> plot(s.out1)
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2. Using Dummy Variables

Estimate a model with a dummy variable for each year and country (see 2 for help
with dummy variables). Note that you do not need to create dummy variables, as
the program will automatically parse the unique values in the selected variables into
dummy variables.

> z.out2 <- zelig(unem ~ gdp + trade + capmob + as.factor(year) +

+ as.factor(country), model = "normal", data = macro)

Set values for the explanatory variables, using the default mean/mode variables, with
country set to the United States and Japan, respectively: Simulate quantities of inter-
est:
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Model

Let Yi be the continuous dependent variable for observation i.

� The stochastic component is described by a univariate normal model with a vector of
means µi and scalar variance σ2:

Yi ∼ Normal(µi, σ
2).

� The systematic component is
µi = xiβ,

where xi is the vector of k explanatory variables and β is the vector of coefficients.

Quantities of Interest

� The expected value (qi$ev) is the mean of simulations from the the stochastic compo-
nent,

E(Y ) = µi = xiβ,

given a draw of β from its posterior.

� The predicted value (qi$pr) is drawn from the distribution defined by the set of pa-
rameters (µi, σ).

� The first difference (qi$fd) is:

FD = E(Y | x1)− E(Y | x)

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,
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where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "normal", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: fitted values. For the normal model, these are identical to the
linear predictors.

– linear.predictors: fitted values. For the normal model, these are identical to
fitted.values.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution defined by
(µi, σ).
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– qi$fd: the simulated first difference in the simulated expected values for the
values specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the normal Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”normal: Normal Regression for
Continuous Dependent Variables” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The normal model is part of the stats package by Venables and Ripley (2002). Advanced
users may wish to refer to help(glm) and help(family), as well as McCullagh and Nelder
(1989). Robust standard errors are implemented via the sandwich package by Zeileis (2004).
Sample data are from King et al. (2000).
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12.40 normal.bayes: Bayesian Normal Linear Regres-

sion

Use Bayesian regression to specify a continuous dependent variable as a linear function of
specified explanatory variables. The model is implemented using a Gibbs sampler. See
Section 12.39 for the maximum-likelihood implementation or Section 12.32 for the ordinary
least squares variation.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "normal.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

Use the following arguments to monitor the convergence of the Markov chain:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).

� mcmc: number of the MCMC iterations after burnin (defaults to 10,000).

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen.

� seed: seed for the random number generator. The default is NA, which corresponds to
a random seed of 12345.

� beta.start: starting values for the Markov chain, either a scalar or vector with length
equal to the number of estimated coefficients. The default is NA, which uses the least
squares estimates as the starting values.

Use the following arguments to specify the model’s priors:

� b0: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar, that
value will be the prior mean for all the coefficients. The default is 0.

� B0: prior precision parameter for the coefficients, either a square matrix (with the
dimensions equal to the number of the coefficients) or a scalar. If a scalar, that value
times an identity matrix will be the prior precision parameter. The default is 0, which
leads to an improper prior.
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� c0: c0/2 is the shape parameter for the Inverse Gamma prior on the variance of the
disturbance terms.

� d0: d0/2 is the scale parameter for the Inverse Gamma prior on the variance of the
disturbance terms.

Zelig users may wish to refer to help(MCMCregress) for more information.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

Examples

1. Basic Example
Attaching the sample dataset:

> data(macro)

Estimating linear regression using normal.bayes:

> z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.bayes",

+ data = macro, verbose = TRUE)
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Checking for convergence before summarizing the estimates:

> geweke.diag(z.out$coefficients)

> heidel.diag(z.out$coefficients)

> raftery.diag(z.out$coefficients)

> summary(z.out)

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given x.out:

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

2. Simulating First Differences
Set explanatory variables to their default(mean/mode) values, with high (80th per-
centile) and low (20th percentile) trade on GDP:

> x.high <- setx(z.out, trade = quantile(macro$trade, prob = 0.8))

> x.low <- setx(z.out, trade = quantile(macro$trade, prob = 0.2))

Estimating the first difference for the effect of high versus low trade on unemployment
rate:

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

Model

� The stochastic component is given by

εi ∼ Normal(0, σ2)

where εi = Yi − µi.

� The systematic component is given by

µi = xiβ,

where xi is the vector of k explanatory variables for observation i and β is the vector
of coefficients.
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� The semi-conjugate priors for β and σ2 are given by

β ∼ Normalk
(
b0, B

−1
0

)
σ2 ∼ InverseGamma

(
c0
2
,
d0

2

)
where b0 is the vector of means for the k explanatory variables, B0 is the k × k pre-
cision matrix (the inverse of a variance-covariance matrix), and c0/2 and d0/2 are the
shape and scale parameters for σ2. Note that β and σ2 are assumed to be a priori
independent.

Quantities of Interest

� The expected values (qi$ev) for the linear regression model are calculated as following:

E(Y ) = xiβ,

given posterior draws of β based on the MCMC iterations.

� The first difference (qi$fd) for the linear regression model is defined as

FD = E(Y | X1)− E(Y | X).

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is

1∑n
i=1 ti

∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]},

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups.
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Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(y ~ x, model = "normal.bayes", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated parame-
ters. The first k columns contain the posterior draws of the coefficients β, and
the last column contains the posterior draws of the variance σ2.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

� From the sim() output object s.out:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first difference in the expected values for the values specified
in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the normal.bayes Zelig model:

Ben Goodrich and Ying Lu. 2007. ”normal.bayes: Bayesian Normal Linear
Regression” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.
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See also

Bayesian normal regression is part of the MCMCpack library by Andrew D. Martin and
Kevin M. Quinn (Martin and Quinn 2005). The convergence diagnostics are part of the
CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines (Plummer
et al. 2005).
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12.41 normal.gam: Generalized Additive Model for Con-

tinuous Dependent Variables

This function runs a nonparametric Generalized Additive Model (GAM) for continuous de-
pendent variables.

Syntax

> z.out <- zelig(y ~ x1 + s(x2), model = "normal.gam", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Where s() indicates a variable to be estimated via nonparametric smooth. All variables for
which s() is not specified, are estimated via standard parametric methods.

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for GAM
models.

� method: Controls the fitting method to be used. Fitting methods are selected via a
list environment within method=gam.method(). See gam.method() for details.

� scale: Generalized Cross Validation (GCV) is used if scale = 0 (see the “Model” sec-
tion for details) except for Normal models where a Un-Biased Risk Estimator (UBRE)
(also see the “Model” section for details) is used with a scale parameter assumed to be
1. If scale is greater than 1, it is assumed to be the scale parameter/variance and
UBRE is used. If scale is negative GCV is used.

� knots: An optional list of knot values to be used for the construction of basis functions.

� H: A user supplied fixed quadratic penalty on the parameters of the GAM can be
supplied with this as its coefficient matrix. For example, ridge penalties can be added
to the parameters of the GAM to aid in identification on the scale of the linear predictor.

� sp: A vector of smoothing parameters for each term.

� ...: additional options passed to the normal.gam model. See the mgcv library for
details.

Examples

1. Basic Example:

Create some data:
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> set.seed(0); n <- 400; sig <- 2;

> x0 <- runif(n, 0, 1); x1 <- runif(n, 0, 1)

> x2 <- runif(n, 0, 1); x3 <- runif(n, 0, 1)

> f0 <- function(x) 2 * sin(pi * x)

> f1 <- function(x) exp(2 * x)

> f2 <- function(x) 0.2 * x^11 * (10 * (1 - x))^6 + 10 * (10 *

+ x)^3 * (1 - x)^10

> f3 <- function(x) 0 * x

> f <- f0(x0) + f1(x1) + f2(x2)

> e <- rnorm(n, 0, sig); y <- f + e

> my.data <- as.data.frame(cbind(y, x0, x1, x2, x3))

Estimate the model, summarize the results, and plot nonlinearities:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), model = "normal.gam",

+ data = my.data)

> summary(z.out)

> plot(z.out, pages = 1, residuals = TRUE)

Note that the plot() function can be used after model estimation and before simulation
to view the nonlinear relationships in the independent variables:

Set values for the explanatory variables to their default (mean/mode) values, then
simulate, summarize and plot quantities of interest:

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low values (20th percentile) and
high values (80th percentile) of the explanatory variable x3 while all the other variables
are held at their default (mean/mode) values.

> x.high <- setx(z.out, x3 = quantile(my.data$x3, 0.8))

> x.low <- setx(z.out, x3 = quantile(my.data$x3, 0.2))

> s.out <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out)

> plot(s.out)

3. Variations in GAM model specification. Note that setx and sim work as shown in the
above examples for any GAM model. As such, in the interest of parsimony, I will not
re-specify the simulations of quantities of interest.
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An extra ridge penalty (useful with convergence problems):

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), H = diag(0.5,

+ 37), model = "normal.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1, residuals = TRUE)

Set the smoothing parameter for the first term, estimate the rest:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), sp = c(0.01,

+ -1, -1, -1), model = "normal.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1)

Set lower bounds on smoothing parameters:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), min.sp = c(0.001,
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+ 0.01, 0, 10), model = "normal.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1)

A GAM with 3df regression spline term & 2 penalized terms:

> z.out <- zelig(y ~ s(x0, k = 4, fx = TRUE, bs = "tp") + s(x1,

+ k = 12) + s(x2, k = 15), model = "normal.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1)

Model

GAM models use families the same way GLM models do: they specify the distribution and
link function to use in model fitting. In the case of normal.gam a normal link function is
used. Specifically, let Yi be the continuous dependent variable for observation i.
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� The stochastic component is described by a univariate normal model with a vector of
means µi and scalar variance σ2:

Yi ∼ Normal(µi, σ
2).

� The systematic component is given by:

µi = xiβ +
J∑

j=1

fj(Zj).

where xi is the vector of k explanatory variables, β is the vector of coefficients and
fj(Zj) for j = 1, . . . J is the set of smooth terms.

Generalized additive models (GAMs) are similar in many respects to generalized linear
models (GLMs). Specifically, GAMs are generally fit by penalized maximum likelihood
estimation and GAMs have (or can have) a parametric component identical to that of a
GLM. The difference is that GAMs also include in their linear predictors a specified sum of
smooth functions.

In this GAM implementation, smooth functions are represented using penalized regression
splines. Two techniques may be used to estimate smoothing parameters: Generalized Cross
Validation (GCV),

n
D

(n−DF )2
, (12.4)

or an Un-Biased Risk Estimator (UBRE) (which is effectively just a rescaled AIC),

D

n
+ 2s

DF

n− s
, (12.5)

where D is the deviance, n is the number of observations, s is the scale parameter, and DF
is the effective degrees of freedom of the model. The use of GCV or UBRE can be set by
the user with the scale command described in the “Additional Inputs” section and in either
case, smoothing parameters are chosen to minimize the GCV or UBRE score for the model.

Estimation for GAM models proceeds as follows: first, basis functions and a set (one
or more) of quadratic penalty coefficient matrices are constructed for each smooth term.
Second, a model matrix is is obtained for the parametric component of the GAM. These
matrices are combined to produce a complete model matrix and a set of penalty matrices
for the smooth terms. Iteratively Reweighted Least Squares (IRLS) is then used to estimate
the model; at each iteration of the IRLS, a penalized weighted least squares model is run
and the smoothing parameters of that model are estimated by GCV or UBRE. This process
is repeated until convergence is achieved.

Further details of the GAM fitting process are given in Wood (2000, 2004, 2006).
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Quantities of Interest

The quantities of interest for the normal.gam model are the same as those for the standard
Normal regression.

� The expected value (qi$ev) for the normal.gam model is the mean of simulations from
the stochastic component,

E(Y ) = µi = xiβ +
J∑

j=1

fj(Zj).

� The predicted value (qi$pr) is a draw from the Normal distribution defined by the set
of parameters (µi, σ

2).

� The first difference (qi$fd) for the normal.gam model is defined as

FD = Pr(Y |w1)− Pr(Y |w)

for w = {X,Z}.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "normal.gam", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by us-
ing coefficients(z.out), and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IRLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– method: the fitting method used.

– converged: logical indicating weather the model converged or not.

– smooth: information about the smoothed parameters.

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the input data frame.
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– model: the model matrix used.

� From summary(z.out)(as well as from zelig()), you may extract:

– p.coeff: the coefficients of the parametric components of the model.

– se: the standard errors of the entire model.

– p.table: the coefficients, standard errors, and associated t statistics for the para-
metric portion of the model.

– s.table: the table of estimated degrees of freedom, estimated rank, F statistics,
and p-values for the nonparametric portion of the model.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from
x and x1.

How to Cite

To cite the normal.gam Zelig model:

Skyler J. Cranmer. 2007. ”normal.gam: Generalized Additive Model for Con-
tinuous Dependent Variables” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The gam.logit model is adapted from the mgcv package by Simon N. Wood (Wood 2006).
Advanced users may wish to refer to help(gam), Wood (2004), Wood (2000), and other
documentation accompanying the mgcv package. All examples are reproduced and extended
from mgcv’s gam() help pages.
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12.42 normal.gee: Generalized Estimating Equation for

Normal Regression

The GEE normal estimates the same model as the standard normal regression. Unlike in
normal regression, GEE normal allows for dependence within clusters, such as in longitudinal
data, although its use is not limited to just panel data. The user must first specify a“working”
correlation matrix for the clusters, which models the dependence of each observation with
other observations in the same cluster. The “working” correlation matrix is a T × T matrix
of correlations, where T is the size of the largest cluster and the elements of the matrix
are correlations between within-cluster observations. The appeal of GEE models is that
it gives consistent estimates of the parameters and consistent estimates of the standard
errors can be obtained using a robust “sandwich” estimator even if the “working” correlation
matrix is incorrectly specified. If the “working” correlation matrix is correctly specified,
GEE models will give more efficient estimates of the parameters. GEE models measure
population-averaged effects as opposed to cluster-specific effects (See Zorn (2001)).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "normal.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted by id and
should be ordered within each cluster when appropriate.

Additional Inputs

� robust: defaults to TRUE. If TRUE, consistent standard errors are estimated using a
“sandwich” estimator.

Use the following arguments to specify the structure of the “working” correlations within
clusters:

� corstr: defaults to "independence". It can take on the following arguments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′ with t 6= t′.
It assumes that there is no correlation within the clusters and the model becomes
equivalent to standard normal regression. The “working” correlation matrix is the
identity matrix.

– Fixed (corstr = "fixed"): If selected, the user must define the “working” cor-
relation matrix with the R argument rather than estimating it from the model.
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– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. Choose this option when the correlations are
assumed to be the same for observations of the same |t − t′| periods apart for
|t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. This option relaxes the assumption that the
correlations are the same for all observations of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence (Mv=2)
1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′ with t 6= t′.

Choose this option if the correlations are assumed to be the same for all observa-
tions within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


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– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr = "AR-M"),
you must also specify Mv = m, where m is the number of periods t of de-
pendence. For example, the first order autoregressive model (AR-1) implies
cor(yit, yit′) = α|t−t′|,∀t, t′ with t 6= t′. In AR-1, observation 1 and observation 2
have a correlation of α. Observation 2 and observation 3 also have a correlation
of α. Observation 1 and observation 3 have a correlation of α2, which is a func-
tion of how 1 and 2 are correlated (α) multiplied by how 2 and 3 are correlated
(α). Observation 1 and 4 have a correlation that is a function of the correlation
between 1 and 2, 2 and 3, and 3 and 4, and so forth.

Sample “working” correlation for Stationary AR-1 (Mv=1)
1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′ with t 6= t′.

No constraints are placed on the correlations, which are then estimated from the
data.

� Mv: defaults to 1. It specifies the number of periods of correlation and only needs to
be specified when corstr is "stat_M_dep", "non_stat_M_dep", or "AR-M".

� R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating
it from the data. The argument is used only when corstr is "fixed". The input is a
T × T matrix of correlations, where T is the size of the largest cluster.

Examples

1. Example with AR-1 Dependence

Attaching the sample turnout dataset:

> data(macro)

Estimating model and presenting summary:

> z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.gee",

+ id = "country", data = macro, robust = TRUE, corstr = "AR-M",

+ Mv = 1)

> summary(z.out)

Set explanatory variables to their default (mean/mode) values, with high (80th per-
centile) and low (20th percentile) values:
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> x.high <- setx(z.out, trade = quantile(macro$trade, 0.8))

> x.low <- setx(z.out, trade = quantile(macro$trade, 0.2))

Generate first differences for the effect of high versus low trade on GDP:

> s.out <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out)

Generate a plot of quantities of interest:

> plot(s.out)
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The Model

Suppose we have a panel dataset, with Yit denoting the continuous dependent variable for
unit i at time t. Yi is a vector or cluster of correlated data where yit is correlated with yit′ for
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some or all t, t′. Note that the model assumes correlations within i but independence across
i.

� The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | µi)

Yit ∼ g(yit | µit)

where f and g are unspecified distributions with means µi and µit. GEE models make
no distributional assumptions and only require three specifications: a mean function,
a variance function, and a correlation structure.

� The systematic component is the mean function, given by:

µit = xitβ

where xit is the vector of k explanatory variables for unit i at time t and β is the vector
of coefficients.

� The variance function is given by:
Vit = 1

� The correlation structure is defined by a T × T “working” correlation matrix, where
T is the size of the largest cluster. Users must specify the structure of the “working”
correlation matrix a priori. The “working” correlation matrix then enters the variance
term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = 1 as the tth
diagonal element (in the case of GEE normal, Ai is the identity matrix), Ri(α) is the
“working” correlation matrix, and φ is a scale parameter. The parameters are then
estimated via a quasi-likelihood approach.

� In GEE models, if the mean is correctly specified, but the variance and correlation
structure are incorrectly specified, then GEE models provide consistent estimates of
the parameters and thus the mean function as well, while consistent estimates of the
standard errors can be obtained via a robust “sandwich” estimator. Similarly, if the
mean and variance are correctly specified but the correlation structure is incorrectly
specified, the parameters can be estimated consistently and the standard errors can be
estimated consistently with the sandwich estimator. If all three are specified correctly,
then the estimates of the parameters are more efficient.

� The robust“sandwich”estimator gives consistent estimates of the standard errors when
the correlations are specified incorrectly only if the number of units i is relatively large
and the number of repeated periods t is relatively small. Otherwise, one should use
the “näıve” model-based standard errors, which assume that the specified correlations
are close approximations to the true underlying correlations. See ? for more details.
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Quantities of Interest

� All quantities of interest are for marginal means rather than joint means.

� The method of bootstrapping generally should not be used in GEE models. If you
must bootstrap, bootstrapping should be done within clusters, which is not currently
supported in Zelig. For conditional prediction models, data should be matched within
clusters.

� The expected values (qi$ev) for the GEE normal model is the mean of simulations
from the stochastic component:

E(Y ) = µc = xcβ,

given draws of β from its sampling distribution, where xc is a vector of values, one for
each independent variable, chosen by the user.

� The first difference (qi$fd) for the GEE normal model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1) and control
(trit = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yit(trit = 0)], the counterfactual expected value of Yit for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to trit = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "normal.gee", id, data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.
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– fitted.values: the vector of fitted values for the systemic component, µit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and z-statistics.

– working.correlation: the “working” correlation matrix

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values
specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How To Cite

To cite the normal.gee Zelig model:

Patrick Lam. 2007. ”normal.gee: General Estimating Equation for Normal Re-
gression” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The gee function is part of the gee package by Vincent J. Carey, ported to R by Thomas Lum-
ley and Brian Ripley. Advanced users may wish to refer to help(gee) and help(family).
Sample data are from King et al. (2000).
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12.43 normal.net: Network Normal Regression for Con-

tinuous Proximity Matrix Dependent Variables

The Network Normal regression model is a close variant of the more standard least squares
regression model (see netlm). Both models specify a continuous proximity matrix (a.k.a.
sociomatricies, adjacency matrices, or matrix representations of directed graphs) dependent
variable as a linear function of a set of explanatory variables. The network Normal model
reports maximum likelihood (rather than least squares) estimates. The two models differ
only in their estimate for the stochastic parameter σ.

Syntax

> z.out <- zelig(y ~ x1 + x2, model = "normal.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for network
normal regression:

� LF: specifies the link function to be used for the network normal regression. Default is
LF="identity", but LF can also be set to "log" or "inverse" by the user.

Examples

1. Basic Example

Load the sample data (see ?friendship for details on the structure of the network
dataframe):

> data(friendship)

Estimate model:

> z.out <- zelig(perpower ~ friends + advice + prestige, model = "normal.net",

+ data = friendship)

> summary(z.out)

Setting values for the explanatory variables to their default values:

> x.out <- setx(z.out)

Simulate fitted values.
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> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)
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Model

The normal.net model performs a Normal regression of the proximity matrix Y, a m×m
matrix representing network ties, on a set of proximity matrices X. This network regression
model is directly analogous to standard Normal regression element-wise on the appropriately
vectorized matrices. Proximity matrices are vectorized by creating Y , a m2 × 1 vector to
represent the proximity matrix. The vectorization which produces the Y vector from the Y
matrix is performed by simple row-concatenation of Y. For example, if Y is a 15×15 matrix,
the Y1,1 element is the first element of Y , and the Y2,1 element is the second element of Y
and so on. Once the input matrices are vectorized, standard Normal regression is performed.

Let Yi be the continuous dependent variable, produced by vectorizing a continuous prox-
imity matrix, for observation i.

� The stochastic component is described by a univariate normal model with a vector of
means µi and scalar variance σ2:

Yi ∼ Normal(µi, σ
2).

� The systematic component is given by:

µi = xiβ.

where xi is the vector of k explanatory variables and β is the vector of coefficients.
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Quantities of Interest

The quantities of interest for the network Normal regression are the same as those for the
standard Normal regression.

� The expected value (qi$ev) for the normal.net model is the mean of simulations from
the stochastic component,

E(Y ) = µi = xiβ,

given a draw of β from its posterior.

� The predicted value (qi$pr) is a draw from the distribution defined by the set of
parameters (µi, σ

2).

� The first difference (qi$fd) for the network Normal model is defined as

FD = Pr(Y |x1)− Pr(Y |x)

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, you run z.out <- zelig(y ~ x, model = "normal.net", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by us-
ing z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the systemic component λ.

– residuals: the working residuals in the final iteration of the IWLS fit.

– linear.predictors: fitted values. For the normal model, these are identical to
fitted values.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– bic: the Bayesian Information Criterion (minus twice the maximized log-likelihood
plus the number of coefficients times log n).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE

� From summary(z.out)(as well as from zelig()), you may extract:

– mod.coefficients: the parameter estimates with their associated standard er-
rors, p-values, and t statistics.
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– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution defined by
(µi, σ

2).

– qi$fd: the simulated first differences in the expected probabilities simulated from
x and x1.

How to Cite

To cite the normal.net Zelig model:

Skyler J. Cranmer. 2007. ”normal.net: Social Network Normal Regression for
Continuous Dependent Variables” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The network normal regression is part of the netglm package by Skyler J. Cranmer and
is built using some of the functionality of the sna package by Carter T. Butts (Butts and
Carley 2001).In addition, advanced users may wish to refer to help(normal.net). Sample
data are fictional.
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12.44 normal.survey: Survey-Weighted Normal Regres-

sion for Continuous Dependent Variables

The survey-weighted Normal regression model is appropriate for survey data obtained using
complex sampling techniques, such as stratified random or cluster sampling (e.g., not simple
random sampling). Like the least squares and Normal regression models (see Section 12.32
and Section 12.39), survey-weighted Normal regression specifies a continuous dependent vari-
able as a linear function of a set of explanatory variables. The survey-weighted normal model
reports estimates of model parameters identical to least squares or Normal regression esti-
mates, but uses information from the survey design to correct variance estimates.

The normal.survey model accommodates three common types of complex survey data.
Each method listed here requires selecting specific options which are detailed in the “Addi-
tional Inputs” section below.

1. Survey weights: Survey data are often published along with weights for each obser-
vation. For example, if a survey intentionally over-samples a particular type of case,
weights can be used to correct for the over-representation of that type of case in the
dataset. Survey weights come in two forms:

(a) Probability weights report the probability that each case is drawn from the popu-
lation. For each stratum or cluster, this is computed as the number of observations
in the sample drawn from that group divided by the number of observations in
the population in the group.

(b) Sampling weights are the inverse of the probability weights.

2. Strata/cluster identification: A complex survey dataset may include variables that
identify the strata or cluster from which observations are drawn. For stratified random
sampling designs, observations may be nested in different strata. There are two ways
to employ these identifiers:

(a) Use finite population corrections to specify the total number of cases in the stra-
tum or cluster from which each observation was drawn.

(b) For stratified random sampling designs, use the raw strata ids to compute sam-
pling weights from the data.

3. Replication weights: To preserve the anonymity of survey participants, some sur-
veys exclude strata and cluster ids from the public data and instead release only pre-
computed replicate weights.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "normal.survey", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)
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Additional Inputs

In addition to the standard zelig inputs (see Section ??), survey-weighted Normal models
accept the following optional inputs:

1. Datasets that include survey weights:

� probs: An optional formula or numerical vector specifying each case’s probability
weight, the probability that the case was selected. Probability weights need not
(and, in most cases, will not) sum to one. Cases with lower probability weights
are weighted more heavily in the computation of model coefficients.

� weights: An optional numerical vector specifying each case’s sample weight, the
inverse of the probability that the case was selected. Sampling weights need not
(and, in most cases, will not) sum to one. Cases with higher sampling weights are
weighted more heavily in the computation of model coefficients.

2. Datasets that include strata/cluster identifiers:

� ids: An optional formula or numerical vector identifying the cluster from which
each observation was drawn (ordered from largest level to smallest level). For
survey designs that do not involve cluster sampling, ids defaults to NULL.

� fpc: An optional numerical vector identifying each case’s frequency weight, the
total number of units in the population from which each observation was sampled.

� strata: An optional formula or vector identifying the stratum from which each
observation was sampled. Entries may be numerical, logical, or strings. For survey
designs that do not involve cluster sampling, strata defaults to NULL.

� nest: An optional logical value specifying whether primary sampling unites (PSUs)
have non-unique ids across multiple strata. nest=TRUE is appropriate when PSUs
reuse the same identifiers across strata. Otherwise, nest defaults to FALSE.

� check.strata: An optional input specifying whether to check that clusters are
nested in strata. If check.strata is left at its default, !nest, the check is not
performed. If check.strata is specified as TRUE, the check is carried out.

3. Datasets that include replication weights:

� repweights: A formula or matrix specifying replication weights, numerical vec-
tors of weights used in a process in which the sample is repeatedly re-weighted
and parameters are re-estimated in order to compute the variance of the model
parameters.

� type: A string specifying the type of replication weights being used. This input
is required if replicate weights are specified. The following types of replication
weights are recognized: "BRR", "Fay", "JK1", "JKn", "bootstrap", or "other".
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� weights: An optional vector or formula specifying each case’s sample weight, the
inverse of the probability that the case was selected. If a survey includes both
sampling weights and replicate weights separately for the same survey, both should
be included in the model specification. In these cases, sampling weights are used
to correct potential biases in in the computation of coefficients and replication
weights are used to compute the variance of coefficient estimates.

� combined.weights: An optional logical value that should be specified as TRUE if
the replicate weights include the sampling weights. Otherwise, combined.weights
defaults to FALSE.

� rho: An optional numerical value specifying a shrinkage factor for replicate weights
of type "Fay".

� bootstrap.average: An optional numerical input specifying the number of it-
erations over which replicate weights of type "bootstrap" were averaged. This
input should be left as NULL for "bootstrap" weights that were not were created
by averaging.

� scale: When replicate weights are included, the variance is computed as the sum
of squared deviations of the replicates from their mean. scale is an optional
overall multiplier for the standard deviations.

� rscale: Like scale, rscale specifies an optional vector of replicate-specific mul-
tipliers for the squared deviations used in variance computation.

� fpc: For models in which "JK1", "JKn", or "other" replicates are specified, fpc
is an optional numerical vector (with one entry for each replicate) designating the
replicates’ finite population corrections.

� fpctype: When a finite population correction is included as an fpc input, fpctype
is a required input specifying whether the input to fpc is a sampling fraction
(fpctype="fraction") or a direct correction (fpctype="correction").

� return.replicates: An optional logical value specifying whether the replicates
should be returned as a component of the output. return.replicates defaults
to FALSE.

Examples

1. A dataset that includes survey weights:

Attach the sample data:

> data(api, package = "survey")

Suppose that a dataset included a continuous measure of public schools’ performance
(api00), a measure of the percentage of students at each school who receive subsi-
dized meals (meals), an indicator for whether each school holds classes year round
(year.rnd), and sampling weights computed by the survey house (pw). Estimate a
model that regresses school performance on the meals and year.rnd variables:
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> z.out1 <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey",

+ weights = ~pw, data = apistrat)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, and set a high (80th
percentile) and low (20th percentile) value for “meals”:

> x.low <- setx(z.out1, meals = quantile(apistrat$meals, 0.2))

> x.high <- setx(z.out1, meals = quantile(apistrat$meals, 0.8))

Generate first differences for the effect of high versus low concentrations of children
receiving subsidized meals on academic performance:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

Generate a visual summary of the quantities of interest:

> plot(s.out1)
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2. A dataset that includes strata/cluster identifiers:

Suppose that the survey house that provided the dataset used in the previous example
excluded sampling weights but made other details about the survey design available. A
user can still estimate a model without sampling weights that instead uses inputs that
identify the stratum and/or cluster to which each observation belongs and the size of
the finite population from which each observation was drawn.

Continuing the example above, suppose the survey house drew at random a fixed
number of elementary schools, a fixed number of middle schools, and a fixed number
of high schools. If the variable stype is a vector of characters ("E" for elementary
schools, "M" for middle schools, and "H" for high schools) that identifies the type of
school each case represents and fpc is a numerical vector that identifies for each case
the total number of schools of the same type in the population, then the user could
estimate the following model:

> z.out2 <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey",

+ strata = ~stype, fpc = ~fpc, data = apistrat)
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Summarize the regression output:

> summary(z.out2)

The coefficient estimates for this example are identical to the point estimates in the
first example, when pre-existing sampling weights were used. When sampling weights
are omitted, they are estimated automatically for "normal.survey" models based on
the user-defined description of sampling designs.

Moreover, because the user provided information about the survey design, the standard
error estimates are lower in this example than in the previous example, in which the
user omitted variables pertaining to the details of the complex survey design.

3. A dataset that includes replication weights:

Consider a dataset that includes information for a sample of hospitals that includes
counts of the number of out-of-hospital cardiac arrests that each hospital treats and
the number of patients who arrive alive at each hospital:

> data(scd, package = "survey")

Survey houses sometimes supply replicate weights (in lieu of details about the survey
design). For the sake of illustrating how replicate weights can be used as inputs in
normal.survey models, create a set of balanced repeated replicate (BRR) weights:

> BRRrep <- 2 * cbind(c(1, 0, 1, 0, 1, 0), c(1, 0, 0, 1, 0, 1),

+ c(0, 1, 1, 0, 0, 1), c(0, 1, 0, 1, 1, 0))

Estimate a model that regresses counts of patients who arrive alive in each hospital
on the number of cardiac arrests that each hospital treats, using the BRR replicate
weights in BRRrep to compute standard errors.

> z.out3 <- zelig(alive ~ arrests, model = "poisson.survey", repweights = BRRrep,

+ type = "BRR", data = scd)

Summarize the regression coefficients:

> summary(z.out3)

Set arrests at its 20th and 80th quantiles:

> x.low <- setx(z.out3, arrests = quantile(scd$arrests, 0.2))

> x.high <- setx(z.out3, arrests = quantile(scd$arrests, 0.8))

Generate first differences for the effect of minimal versus maximal cardiac arrests on
numbers of patients who arrive alive:

> s.out3 <- sim(z.out3, x = x.low, x1 = x.high)
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> summary(s.out3)

Generate a visual summary of quantities of interest:

> plot(s.out3)
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Model

Let Yi be the continuous dependent variable for observation i.

� The stochastic component is described by a univariate normal model with a vector of
means µi and scalar variance σ2:

Yi ∼ Normal(µi, σ
2).

� The systematic component is
µi = xiβ,

where xi is the vector of k explanatory variables and β is the vector of coefficients.
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Variance

When replicate weights are not used, the variance of the coefficients is estimated as

Σ̂

[
n∑

i=1

(1− πi)

π2
i

(Xi(Yi − µi))
′(Xi(Yi − µi)) + 2

n∑
i=1

n∑
j=i+1

(πij − πiπj)

πiπjπij

(Xi(Yi − µi))
′(Xj(Yj − µj))

]
Σ̂

where πi is the probability of case i being sampled, Xi is a vector of the values of the
explanatory variables for case i, Yi is value of the dependent variable for case i, µ̂i is the
predicted value of the dependent variable for case i based on the linear model estimates,
and Σ̂ is the conventional variance-covariance matrix in a parametric glm. This statistic
is derived from the method for estimating the variance of sums described in Binder (1983)
and the Horvitz-Thompson estimator of the variance of a sum described in Horvitz and
Thompson (1952).

When replicate weights are used, the model is re-estimated for each set of replicate
weights, and the variance of each parameter is estimated by summing the squared deviations
of the replicates from their mean.

Quantities of Interest

� The expected value (qi$ev) is the mean of simulations from the the stochastic compo-
nent,

E(Y ) = µi = xiβ,

given a draw of β from its posterior.

� The predicted value (qi$pr) is drawn from the distribution defined by the set of pa-
rameters (µi, σ).

� The first difference (qi$fd) is:

FD = E(Y | x1)− E(Y | x)

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.
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� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "normal.survey", data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: fitted values. For the survey-weighted normal model, these are
identical to the linear predictors.

– linear.predictors: fitted values. For the survey-weighted normal model, these
are identical to fitted.values.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.
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� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution defined by
(µi, σ).

– qi$fd: the simulated first difference in the simulated expected values for the
values specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

When users estimate normal.survey models with replicate weights in Zelig, an object
called .survey.prob.weights is created in the global environment. Zelig will over-write
any existing object with that name, and users are therefore advised to re-name any object
called .survey.prob.weights before using normal.survey models in Zelig.

How to Cite

To cite the normal.survey Zelig model:

Nicholas Carnes. 2008. ”normal.survey: Survey-Weighted Normal Regression for
Continuous Dependent Variables” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Survey-weighted linear models and the sample data used in the examples above are a part
of the survey package by Thomas Lumley. Users may wish to refer to the help files for
the three functions that Zelig draws upon when estimating survey-weighted models, namely,
help(svyglm), help(svydesign), and help(svrepdesign). The Gamma model is part of
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the stats package by Venables and Ripley (2002). Advanced users may wish to refer to
help(glm) and help(family), as well as McCullagh and Nelder (1989).

afterpkgs, echo=FALSE = after<-search() torm<-setdiff(after,before) for (pkg in torm)
detach(pos=match(pkg,search())) @
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12.45 ologit: Ordinal Logistic Regression for Ordered

Categorical Dependent Variables

Use the ordinal logit regression model if your dependent variable is ordered and categorical,
either in the form of integer values or character strings.

Syntax

> z.out <- zelig(as.factor(Y) ~ X1 + X2, model = "ologit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

If Y takes discrete integer values, the as.factor() command will order automatically order
the values. If Y takes on values composed of character strings, such as “strongly agree”,
“agree”, and “disagree”, as.factor() will order the values in the order in which they appear
in Y. You will need to replace your dependent variable with a factored variable prior to
estimating the model through zelig(). See Section 2 for more information on creating
ordered factors and Example 1 below.

Example

1. Creating An Ordered Dependent Variable

Load the sample data:

> data(sanction)

Create an ordered dependent variable:

> sanction$ncost <- factor(sanction$ncost, ordered = TRUE, levels = c("net gain",

+ "little effect", "modest loss", "major loss"))

Estimate the model:

> z.out <- zelig(ncost ~ mil + coop, model = "ologit", data = sanction)

Set the explanatory variables to their observed values:

> x.out <- setx(z.out, fn = NULL)

Simulate fitted values given x.out and view the results:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)
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2. First Differences

Using the sample data sanction, estimate the empirical model and returning the
coefficients:

> z.out <- zelig(as.factor(cost) ~ mil + coop, model = "ologit",

+ data = sanction)

> summary(z.out)

Set the explanatory variables to their means, with mil set to 0 (no military action in
addition to sanctions) in the baseline case and set to 1 (military action in addition to
sanctions) in the alternative case:

> x.low <- setx(z.out, mil = 0)

> x.high <- setx(z.out, mil = 1)

Generate simulated fitted values and first differences, and view the results:

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

Model

Let Yi be the ordered categorical dependent variable for observation i that takes one of the
integer values from 1 to J where J is the total number of categories.

� The stochastic component begins with an unobserved continuous variable, Y ∗
i , which

follows the standard logistic distribution with a parameter µi,

Y ∗
i ∼ Logit(y∗i | µi),

to which we add an observation mechanism

Yi = j if τj−1 ≤ Y ∗
i ≤ τj for j = 1, . . . , J.

where τl (for l = 0, . . . , J) are the threshold parameters with τl < τm for all l < m and
τ0 = −∞ and τJ = ∞.

� The systematic component has the following form, given the parameters τj and β, and
the explanatory variables xi:

Pr(Y ≤ j) = Pr(Y ∗ ≤ τj) =
exp(τj − xiβ)

1 + exp(τj − xiβ)
,

which implies:

πj =
exp(τj − xiβ)

1 + exp(τj − xiβ)
− exp(τj−1 − xiβ)

1 + exp(τj−1 − xiβ)
.
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Quantities of Interest

� The expected values (qi$ev) for the ordinal logit model are simulations of the predicted
probabilities for each category:

E(Y = j) = πj =
exp(τj − xiβ)

1 + exp(τj − xiβ)
− exp(τj−1 − xiβ)

1 + exp(τj−1 − xiβ)
,

given a draw of β from its sampling distribution.

� The predicted value (qi$pr) is drawn from the logit distribution described by µi, and
observed as one of J discrete outcomes.

� The difference in each of the predicted probabilities (qi$fd) is given by

Pr(Y = j | x1) − Pr(Y = j | x) for j = 1, . . . , J.

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1

nj

nj∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of treated observations in category j.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1

nj

nj∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of treated observations in category j.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "ologit", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.
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– zeta: a vector containing the estimated class boundaries τj.

– deviance: the residual deviance.

– fitted.values: the n× J matrix of in-sample fitted values.

– df.residual: the residual degrees of freedom.

– edf: the effective degrees of freedom.

– Hessian: the Hessian matrix.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
and t-statistics.

� From the sim() output object s.out, you may extract quantities of interest arranged
as arrays. Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x, indexed
by simulation × quantity × x-observation (for more than one x-observation).

– qi$pr: the simulated predicted values drawn from the distribution defined by the
expected probabilities, indexed by simulation × x-observation.

– qi$fd: the simulated first difference in the predicted probabilities for the values
specified in x and x1, indexed by simulation × quantity × x-observation (for more
than one x-observation).

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the ologit Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”ologit: Ordinal Logistic Re-
gression for Ordered Categorical Dependent Variables” in Kosuke Imai, Gary
King, and Olivia Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.
harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.
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See also

The ordinal logit model is part of the MASS package by William N. Venable and Brian D.
Ripley (Venables and Ripley 2002). Advanced users may wish to refer to help(polr) as well
as McCullagh and Nelder (1989). Sample data are from Martin (1992).
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12.46 oprobit: Ordinal Probit Regression for Ordered

Categorical Dependent Variables

Use the ordinal probit regression model if your dependent variables are ordered and categor-
ical. They may take on either integer values or character strings. For a Bayesian implemen-
tation of this model, see Section 12.47.

Syntax

> z.out <- zelig(as.factor(Y) ~ X1 + X2, model = "oprobit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

If Y takes discrete integer values, the as.factor() command will order it automatically.
If Y takes on values composed of character strings, such as “strongly agree”, “agree”, and
“disagree”, as.factor() will order the values in the order in which they appear in Y. You
will need to replace your dependent variable with a factored variable prior to estimating the
model through zelig(). See Section 2 for more information on creating ordered factors and
Example 1 below.

Example

1. Creating An Ordered Dependent Variable

Load the sample data:

> data(sanction)

Create an ordered dependent variable:

> sanction$ncost <- factor(sanction$ncost, ordered = TRUE, levels = c("net gain",

+ "little effect", "modest loss", "major loss"))

Estimate the model:

> z.out <- zelig(ncost ~ mil + coop, model = "oprobit", data = sanction)

> summary(z.out)

Set the explanatory variables to their observed values:

> x.out <- setx(z.out, fn = NULL)

Simulate fitted values given x.out and view the results:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)
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2. First Differences

Using the sample data sanction, let us estimate the empirical model and return the
coefficients:

> z.out <- zelig(as.factor(cost) ~ mil + coop, model = "oprobit",

+ data = sanction)

> summary(z.out)

Set the explanatory variables to their means, with mil set to 0 (no military action in
addition to sanctions) in the baseline case and set to 1 (military action in addition to
sanctions) in the alternative case:

> x.low <- setx(z.out, mil = 0)

> x.high <- setx(z.out, mil = 1)

Generate simulated fitted values and first differences, and view the results:

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

> plot(s.out)
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First Differences: P(Y=j|X1)−P(Y=j|X)

Model

Let Yi be the ordered categorical dependent variable for observation i that takes one of the
integer values from 1 to J where J is the total number of categories.

� The stochastic component is described by an unobserved continuous variable, Y ∗
i , which

follows the normal distribution with mean µi and unit variance

Y ∗
i ∼ N(µi, 1).

The observation mechanism is

Yi = j if τj−1 ≤ Y ∗
i ≤ τj for j = 1, . . . , J.

where τk for k = 0, . . . , J is the threshold parameter with the following constraints;
τl < τm for all l < m and τ0 = −∞ and τJ = ∞.
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Given this observation mechanism, the probability for each category, is given by

Pr(Yi = j) = Φ(τj | µi)− Φ(τj−1 | µi) for j = 1, . . . , J

where Φ(µi) is the cumulative distribution function for the Normal distribution with
mean µi and unit variance.

� The systematic component is given by

µi = xiβ

where xi is the vector of explanatory variables and β is the vector of coefficients.

Quantities of Interest

� The expected values (qi$ev) for the ordinal probit model are simulations of the pre-
dicted probabilities for each category:

E(Yi = j) = Pr(Yi = j) = Φ(τj | µi)− Φ(τj−1 | µi) for j = 1, . . . , J,

given draws of β from its posterior.

� The predicted value (qi$pr) is the observed value of Yi given the underlying standard
normal distribution described by µi.

� The difference in each of the predicted probabilities (qi$fd) is given by

Pr(Y = j | x1) − Pr(Y = j | x) for j = 1, . . . , J.

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group in category j is

1

nj

nj∑
i:ti=1

[Yi(ti = 1)− E[Yi(ti = 0)]],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of treated observations in category j.

� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group in category j is

1

nj

nj∑
i:ti=1

[Yi(ti = 1)− ̂Yi(ti = 0)],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of treated observations in category j.
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Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "oprobit", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: the named vector of coefficients.

– fitted.values: an n× J matrix of the in-sample fitted values.

– predictors: an n× (J − 1) matrix of the linear predictors xiβj.

– residuals: an n× (J − 1) matrix of the residuals.

– df.residual: the residual degrees of freedom.

– df.total: the total degrees of freedom.

– rss: the residual sum of squares.

– y: an n× J matrix of the dependent variables.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coef3: a table of the coefficients with their associated standard errors and t-
statistics.

– cov.unscaled: the variance-covariance matrix.

– pearson.resid: an n× (m− 1) matrix of the Pearson residuals.

� From the sim() output object s.out, you may extract quantities of interest arranged
as arrays. Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x, indexed
by simulation × quantity × x-observation (for more than one x-observation).

– qi$pr: the simulated predicted values drawn from the distribution defined by the
expected probabilities, indexed by simulation × x-observation.

– qi$fd: the simulated first difference in the predicted probabilities for the values
specified in x and x1, indexed by simulation × quantity × x-observation (for more
than one x-observation).

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.
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How to Cite

To cite the oprobit Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”oprobit: Ordinal Probit
Regression for Ordered Categorical Dependent Variables” in Kosuke Imai,
Gary King, and Olivia Lau, ”Zelig: Everyone’s Statistical Software,”http:
//gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The ordinal probit function is part of the VGAM package by Thomas Yee (Yee and Hastie
2003). In addition, advanced users may wish to refer to help(vglm) in the VGAM library.
Additional documentation is available at http://www.stat.auckland.ac.nz/˜ yee.Sample data
are from Martin (1992)
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12.47 oprobit.bayes: Bayesian Ordered Probit Regres-

sion

Use the ordinal probit regression model if your dependent variables are ordered and categor-
ical. They may take either integer values or character strings. The model is estimated using
a Gibbs sampler with data augmentation. For a maximum-likelihood implementation of this
models, see Section 12.46.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "oprobit.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

zelig() accepts the following arguments to monitor the Markov chain:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).

� mcmc: number of the MCMC iterations after burnin (defaults 10,000).

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� tune: tuning parameter for the Metropolis-Hasting step. The default value is NA which
corresponds to 0.05 divided by the number of categories in the response variable.

� verbose: defaults to FALSE If TRUE, the progress of the sampler (every 10%) is printed
to the screen.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed 12345.

� beta.start: starting values for the Markov chain, either a scalar or vector with length
equal to the number of estimated coefficients. The default is NA, which uses the maxi-
mum likelihood estimates as the starting values.

Use the following parameters to specify the model’s priors:

� b0: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value,
that value will be the prior mean for all the coefficients. The default is 0.
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� B0: prior precision parameter for the coefficients, either a square matrix (with dimen-
sions equal to the number of coefficients) or a scalar. If a scalar value, that value times
an identity matrix will be the prior precision parameter. The default is 0 which leads
to an improper prior.

Zelig users may wish to refer to help(MCMCoprobit) for more information.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

Examples

1. Basic Example
Attaching the sample dataset:

> data(sanction)

Estimating ordered probit regression using oprobit.bayes:

> z.out <- zelig(ncost ~ mil + coop, model = "oprobit.bayes", data = sanction,

+ verbose = TRUE)

Creating an ordered dependent variable:
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> sanction$ncost <- factor(sanction$ncost, ordered = TRUE, levels = c("net gain",

+ "little effect", "modest loss", "major loss"))

Checking for convergence before summarizing the estimates:

> heidel.diag(z.out$coefficients)

> raftery.diag(z.out$coefficients)

> summary(z.out)

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given: x.out.

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

2. Simulating First Differences
Estimating the first difference (and risk ratio) in the probabilities of incurring different
level of cost when there is no military action versus military action while all the other
variables held at their default values.

> x.high <- setx(z.out, mil = 0)

> x.low <- setx(z.out, mil = 1)

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

Model

Let Yi be the ordered categorical dependent variable for observation i which takes an integer
value j = 1, . . . , J .

� The stochastic component is described by an unobserved continuous variable, Y ∗
i ,

Y ∗
i ∼ Normal(µi, 1).

Instead of Y ∗
i , we observe categorical variable Yi,

Yi = j if τj−1 ≤ Y ∗
i ≤ τj for j = 1, . . . , J.

where τj for j = 0, . . . , J are the threshold parameters with the following constraints,
τl < τm for l < m, and τ0 = −∞, τJ = ∞.
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The probability of observing Yi equal to category j is,

Pr(Yi = j) = Φ(τj | µi)− Φ(τj−1 | µi) for j = 1, . . . , J

where Φ(· | µi) is the cumulative distribution function of the Normal distribution with
mean µi and variance 1.

� The systematic component is given by

µi = xiβ,

where xi is the vector of k explanatory variables for observation i and β is the vector
of coefficients.

� The prior for β is given by

β ∼ Normalk
(
b0, B

−1
0

)
where b0 is the vector of means for the k explanatory variables and B0 is the k × k
precision matrix (the inverse of a variance-covariance matrix).

Quantities of Interest

� The expected values (qi$ev) for the ordered probit model are the predicted probability
of belonging to each category:

Pr(Yi = j) = Φ(τj | xiβ)− Φ(τj−1 | xiβ),

given the posterior draws of β and threshold parameters τ from the MCMC iterations.

� The predicted values (qi$pr) are the observed values of Yi given the observation scheme
and the posterior draws of β and cut points τ from the MCMC iterations.

� The first difference (qi$fd) in category j for the ordered probit model is defined as

FDj = Pr(Yi = j | X1)− Pr(Yi = j | X).

� The risk ratio (qi$rr) in category j is defined as

RRj = Pr(Yi = j | X1) / Pr(Yi = j | X).

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group in category j is

1

nj

nj∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]},

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of observations in the treatment group that
belong to category j.
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� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group in category j is

1

nj

nj∑
i:ti=1

[Yi(ti = 1)− ̂Yi(ti = 0)],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of observations in the treatment group that
belong to category j.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(y ~ x, model = "oprobit.bayes", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated coefficients
β and threshold parameters τ . Note, element τ1 is normalized to 0 and is not
returned in the coefficients object.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

� From the sim() output object s.out:

– qi$ev: the simulated expected values (probabilities) of each of the J categories
for the specified values of x.

– qi$pr: the simulated predicted values (observed values) for the specified values
of x.

– qi$fd: the simulated first difference in the expected values of each of the J
categories for the values specified in x and x1.

– qi$rr: the simulated risk ratio for the expected values of each of the J categories
simulated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.
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How to Cite

To cite the oprobit.bayes Zelig model:

Ben Goodrich and Ying Lu. 2007. ”oprobit.bayes: Bayesian Ordered Probit
Regression” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Bayesian ordinal probit regression is part of the MCMCpack library by Andrew D. Martin
and Kevin M. Quinn (Martin and Quinn 2005). The convergence diagnostics are part of the
CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines (Plummer
et al. 2005).
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12.48 poisson: Poisson Regression for Event Count

Dependent Variables

Use the Poisson regression model if the observations of your dependent variable represents
the number of independent events that occur during a fixed period of time (see the negative
binomial model, Section 12.38, for over-dispersed event counts.) For a Bayesian implemen-
tation of this model, see Section 12.49.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "poisson", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for poisson
regression:

� robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard
errors via the sandwich package (see Zeileis (2004)). The default type of robust stan-
dard error is heteroskedastic and autocorrelation consistent (HAC), and assumes that
observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

* "vcovHAC": (default if robust = TRUE) HAC standard errors.

* "kernHAC": HAC standard errors using the weights given in Andrews (1991).

* "weave": HAC standard errors using the weights given in Lumley and Hea-
gerty (1999).

– order.by: defaults to NULL (the observations are chronologically ordered as in the
original data). Optionally, you may specify a vector of weights (either as order.by
= z, where z exists outside the data frame; or as order.by = ~z, where z is a
variable in the data frame). The observations are chronologically ordered by the
size of z.

– ...: additional options passed to the functions specified in method. See the
sandwich library and Zeileis (2004) for more options.

Example

Load sample data:

> data(sanction)
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Estimate Poisson model:

> z.out <- zelig(num ~ target + coop, model = "poisson", data = sanction)

> summary(z.out)

Set values for the explanatory variables to their default mean values:

> x.out <- setx(z.out)

Simulate fitted values:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)
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Model

Let Yi be the number of independent events that occur during a fixed time period. This
variable can take any non-negative integer.

� The Poisson distribution has stochastic component

Yi ∼ Poisson(λi),

where λi is the mean and variance parameter.

� The systematic component is
λi = exp(xiβ),

where xi is the vector of explanatory variables, and β is the vector of coefficients.

Quantities of Interest

� The expected value (qi$ev) is the mean of simulations from the stochastic component,

E(Y ) = λi = exp(xiβ),

given draws of β from its sampling distribution.

� The predicted value (qi$pr) is a random draw from the poisson distribution defined
by mean λi.

� The first difference in the expected values (qi$fd) is given by:

FD = E(Y |x1)− E(Y | x)

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,
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where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "poisson", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: a vector of the fitted values for the systemic component λ.

– linear.predictors: a vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values given the specified values of x.

– qi$pr: the simulated predicted values drawn from the distributions defined by λi.

– qi$fd: the simulated first differences in the expected values given the specified
values of x and x1.
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– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the poisson Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”poisson: Poisson Regression for
Event Count Dependent Variables” in Kosuke Imai, Gary King, and Olivia
Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/
zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The poisson model is part of the stats package by Venables and Ripley (2002). Advanced
users may wish to refer to help(glm) and help(family), as well as McCullagh and Nelder
(1989). Robust standard errors are implemented via the sandwich package by Zeileis (2004).
Sample data are from Martin (1992).
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12.49 poisson.bayes: Bayesian Poisson Regression

Use the Poisson regression model if the observations of your dependent variable represents
the number of independent events that occur during a fixed period of time. The model is
fit using a random walk Metropolis algorithm. For a maximum-likelihood estimation of this
model see Section 12.48.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "poisson.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

Use the following argument to monitor the Markov chain:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).

� mcmc: number of the MCMC iterations after burnin (defaults to 10,000).

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� tune: Metropolis tuning parameter, either a positive scalar or a vector of length k,
where k is the number of coefficients. The tuning parameter should be set such that
the acceptance rate of the Metropolis algorithm is satisfactory (typically between 0.20
and 0.5). The default value is 1.1.

� verbose: default to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed of 12345.

� beta.start: starting values for the Markov chain, either a scalar or vector with length
equal to the number of estimated coefficients. The default is NA, such that the maximum
likelihood estimates are used as the starting values.

Use the following parameters to specify the model’s priors:

� b0: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar, that
value will be the prior mean for all the coefficients. The default is 0.
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� B0: prior precision parameter for the coefficients, either a square matrix (with the
dimensions equal to the number of the coefficients) or a scalar. If a scalar, that value
times an identity matrix will be the prior precision parameter. The default is 0, which
leads to an improper prior.

Zelig users may wish to refer to help(MCMCpoisson) for more information.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

Examples

1. Basic Example
Attaching the sample dataset:

> data(sanction)

Estimating the Poisson regression using poisson.bayes:

> z.out <- zelig(num ~ target + coop, model = "poisson.bayes",

+ data = sanction, verbose = TRUE)

Checking convergence diagnostics before summarizing the estimates:
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> geweke.diag(z.out$coefficients)

> heidel.diag(z.out$coefficients)

> raftery.diag(z.out$coefficients)

> summary(z.out)

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given x.out.

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

2. Simulating First Differences
Estimating the first difference in the number of countries imposing sanctions when the
number of targets is set to be its maximum versus its minimum :

> x.max <- setx(z.out, target = max(sanction$target))

> x.min <- setx(z.out, target = min(sanction$target))

> s.out2 <- sim(z.out, x = x.max, x1 = x.min)

> summary(s.out2)

Model

Let Yi be the number of independent events that occur during a fixed time period.

� The stochastic component is given by

Yi ∼ Poisson(λi)

where λi is the mean and variance parameter.

� The systematic component is given by

λi = exp(xiβ)

where xi is the vector of k explanatory variables for observation i and β is the vector
of coefficients.

� The prior for β is given by

β ∼ Normalk
(
b0, B

−1
0

)
where b0 is the vector of means for the k explanatory variables and B0 is the k × k
precision matrix (the inverse of a variance-covariance matrix).
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Quantities of Interest

� The expected values (qi$ev) for the Poisson model are calculated as following:

E(Y | X) = λi = exp(xiβ),

given the posterior draws of β based on the MCMC iterations.

� The predicted values (qi$pr) are draws from the Poisson distribution with parameter
λi.

� The first difference (qi$fd) for the Poisson model is defined as

FD = E(Y | X1)− E(Y | X).

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is

1∑n
i=1 ti

∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]},

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups.

� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group is

1∑n
i=1 ti

∑
i:ti=1

[Yi(ti = 1)− ̂Yi(ti = 0)],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(y ~ x, model = "poisson.bayes", data)

you may examine the available information in z.out by using names(z.out), see the draws
from the posterior distribution of the coefficients by using z.out$coefficients, and
view a default summary of information through summary(z.out). Other elements available
through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:
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– coefficients: draws from the posterior distributions of the estimated parame-
ters.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

� From the sim() output object s.out:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected values for the values specified
in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the poisson.bayes Zelig model:

Ben Goodrich and Ying Lu. 2007. ”poisson.bayes: Bayesian Poisson Regression”
in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s Statistical
Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Bayesian poisson regression is part of the MCMCpack library by Andrew D. Martin and
Kevin M. Quinn (Martin and Quinn 2005). The convergence diagnostics are part of the
CODA library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines (Plummer
et al. 2005).
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12.50 poisson.gam: Generalized Additive Model for Count

Dependent Variables

This function runs a nonparametric Generalized Additive Model (GAM) for count dependent
variables.

Syntax

> z.out <- zelig(y ~ x1 + s(x2), model = "poisson.gam", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Where s() indicates a variable to be estimated via nonparametric smooth. All variables for
which s() is not specified, are estimated via standard parametric methods.

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for GAM
models.

� method: Controls the fitting method to be used. Fitting methods are selected via a
list environment within method=gam.method(). See gam.method() for details.

� scale: Generalized Cross Validation (GCV) is used if scale = 0 (see the “Model” sec-
tion for details) except for Poisson models where a Un-Biased Risk Estimator (UBRE)
(also see the “Model” section for details) is used with a scale parameter assumed to be
1. If scale is greater than 1, it is assumed to be the scale parameter/variance and
UBRE is used. If scale is negative GCV is used.

� knots: An optional list of knot values to be used for the construction of basis functions.

� H: A user supplied fixed quadratic penalty on the parameters of the GAM can be
supplied with this as its coefficient matrix. For example, ridge penalties can be added
to the parameters of the GAM to aid in identification on the scale of the linear predictor.

� sp: A vector of smoothing parameters for each term.

� ...: additional options passed to the poisson.gam model. See the mgcv library for
details.

Examples

1. Basic Example

Create some count data:
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> set.seed(0); n <- 400; sig <- 2;

> x0 <- runif(n, 0, 1); x1 <- runif(n, 0, 1)

> x2 <- runif(n, 0, 1); x3 <- runif(n, 0, 1)

> f0 <- function(x) 2 * sin(pi * x)

> f1 <- function(x) exp(2 * x)

> f2 <- function(x) 0.2 * x^11 * (10 * (1 - x))^6 + 10 * (10 *

+ x)^3 * (1 - x)^10

> f3 <- function(x) 0 * x

> f <- f0(x0) + f1(x1) + f2(x2)

> g <- exp(f/4); y <- rpois(rep(1, n), g)

> my.data <- as.data.frame(cbind(y, x0, x1, x2, x3))

Estimate the model, summarize the results, and plot nonlinearities:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), model = "poisson.gam",

+ data = my.data)

> summary(z.out)

> plot(z.out, pages = 1, residuals = TRUE)

Note that the plot() function can be used after model estimation and before simulation
to view the nonlinear relationships in the independent variables:

Set values for the explanatory variables to their default (mean/mode) values, then
simulate, summarize and plot quantities of interest:

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low values (20th percentile) and
high values (80th percentile) of the explanatory variable x3 while all the other variables
are held at their default (mean/mode) values.

> x.high <- setx(z.out, x3 = quantile(my.data$x3, 0.8))

> x.low <- setx(z.out, x3 = quantile(my.data$x3, 0.2))

> s.out <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out)

> plot(s.out)

3. Variations in GAM model specification. Note that setx and sim work as shown in the
above examples for any GAM model. As such, in the interest of parsimony, I will not
re-specify the simulations of quantities of interest.
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An extra ridge penalty (useful with convergence problems):

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), H = diag(0.5,

+ 37), model = "poisson.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1, residuals = TRUE)

Set the smoothing parameter for the first term, estimate the rest:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), sp = c(0.01,

+ -1, -1, -1), model = "poisson.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1)

Set lower bounds on smoothing parameters:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), min.sp = c(0.001,
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+ 0.01, 0, 10), model = "poisson.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1)

A GAM with 3df regression spline term & 2 penalized terms:

> z.out <- zelig(y ~ s(x0, k = 4, fx = TRUE, bs = "tp") + s(x1,

+ k = 12) + s(x2, k = 15), model = "poisson.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1)

Model

GAM models use families the same way GLM models do: they specify the distribution and
link function to use in model fitting. In the case of poisson.gam a Poisson link function is
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used. Specifically, let Yi be the dependent variable for observation i. Yi is thus the number
of independent events that occur during a fixed time period. This variable can take any
non-negative integer.

� The Poisson distribution has stochastic component

Yi ∼ Poisson(λi),

where λi is the mean and variance parameter.

� The systematic component is given by:

λi = exp

(
xiβ +

J∑
j=1

fj(Zj)

)
.

where xi is the vector of explanatory variables, β is the vector of coefficients and fj(Zj)
for j = 1, . . . J is the set of smooth terms.

Generalized additive models (GAMs) are similar in many respects to generalized linear
models (GLMs). Specifically, GAMs are generally fit by penalized maximum likelihood
estimation and GAMs have (or can have) a parametric component identical to that of a
GLM. The difference is that GAMs also include in their linear predictors a specified sum of
smooth functions.

In this GAM implementation, smooth functions are represented using penalized regression
splines. Two techniques may be used to estimate smoothing parameters: Generalized Cross
Validation (GCV),

n
D

(n−DF )2
, (12.6)

or an Un-Biased Risk Estimator (UBRE) (which is effectively just a rescaled AIC),

D

n
+ 2s

DF

n− s
, (12.7)

where D is the deviance, n is the number of observations, s is the scale parameter, and DF
is the effective degrees of freedom of the model. The use of GCV or UBRE can be set by
the user with the scale command described in the “Additional Inputs” section and in either
case, smoothing parameters are chosen to minimize the GCV or UBRE score for the model.

Estimation for GAM models proceeds as follows: first, basis functions and a set (one
or more) of quadratic penalty coefficient matrices are constructed for each smooth term.
Second, a model matrix is is obtained for the parametric component of the GAM. These
matrices are combined to produce a complete model matrix and a set of penalty matrices
for the smooth terms. Iteratively Reweighted Least Squares (IRLS) is then used to estimate
the model; at each iteration of the IRLS, a penalized weighted least squares model is run
and the smoothing parameters of that model are estimated by GCV or UBRE. This process
is repeated until convergence is achieved.

Further details of the GAM fitting process are given in Wood (2000, 2004, 2006).
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Quantities of Interest

The quantities of interest for the poisson.gam model are the same as those for the standard
Poisson regression.

� The expected value (qi$ev) for the poisson.gam model is the mean of simulations
from the stochastic component,

E(Y ) = λi = exp

(
xiβ

J∑
j=1

fj(Zj)

)
.

� The predicted value (qi$pr) is a random draw from the Poisson distribution defined
by mean λi.

� The first difference (qi$fd) for the poisson.gam model is defined as

FD = Pr(Y |w1)− Pr(Y |w)

for w = {X,Z}.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "poisson.gam", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by us-
ing coefficients(z.out), and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IRLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– method: the fitting method used.

– converged: logical indicating weather the model converged or not.

– smooth: information about the smoothed parameters.

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the input data frame.
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– model: the model matrix used.

� From summary(z.out)(as well as from zelig()), you may extract:

– p.coeff: the coefficients of the parametric components of the model.

– se: the standard errors of the entire model.

– p.table: the coefficients, standard errors, and associated t statistics for the para-
metric portion of the model.

– s.table: the table of estimated degrees of freedom, estimated rank, F statistics,
and p-values for the nonparametric portion of the model.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from
x and x1.

How to Cite

To cite the poisson.gam Zelig model:

Skyler J. Cranmer. 2007. ”poisson.gam: Generalized Additive Model for Event
Count Dependent Variables” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The gam.logit model is adapted from the mgcv package by Simon N. Wood (Wood 2006).
Advanced users may wish to refer to help(gam), Wood (2004), Wood (2000), and other
documentation accompanying the mgcv package. All examples are reproduced and extended
from mgcv’s gam() help pages.
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12.51 poisson.gee: Generalized Estimating Equation

for Poisson Regression

The GEE poisson estimates the same model as the standard poisson regression (appropriate
when your dependent variable represents the number of independent events that occur during
a fixed period of time). Unlike in poisson regression, GEE poisson allows for dependence
within clusters, such as in longitudinal data, although its use is not limited to just panel data.
The user must first specify a “working” correlation matrix for the clusters, which models the
dependence of each observation with other observations in the same cluster. The “working”
correlation matrix is a T ×T matrix of correlations, where T is the size of the largest cluster
and the elements of the matrix are correlations between within-cluster observations. The
appeal of GEE models is that it gives consistent estimates of the parameters and consistent
estimates of the standard errors can be obtained using a robust “sandwich” estimator even if
the “working” correlation matrix is incorrectly specified. If the “working” correlation matrix
is correctly specified, GEE models will give more efficient estimates of the parameters. GEE
models measure population-averaged effects as opposed to cluster-specific effects (See Zorn
(2001)).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "poisson.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted by id and
should be ordered within each cluster when appropriate.

Additional Inputs

� robust: defaults to TRUE. If TRUE, consistent standard errors are estimated using a
“sandwich” estimator.

Use the following arguments to specify the structure of the “working” correlations within
clusters:

� corstr: defaults to "independence". It can take on the following arguments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′ with t 6= t′.
It assumes that there is no correlation within the clusters and the model becomes
equivalent to standard poisson regression. The“working” correlation matrix is the
identity matrix.

– Fixed (corstr = "fixed"): If selected, the user must define the “working” cor-
relation matrix with the R argument rather than estimating it from the model.
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– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. Choose this option when the correlations are
assumed to be the same for observations of the same |t − t′| periods apart for
|t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. This option relaxes the assumption that the
correlations are the same for all observations of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence (Mv=2)
1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′ with t 6= t′.

Choose this option if the correlations are assumed to be the same for all observa-
tions within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


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– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr = "AR-M"),
you must also specify Mv = m, where m is the number of periods t of de-
pendence. For example, the first order autoregressive model (AR-1) implies
cor(yit, yit′) = α|t−t′|,∀t, t′ with t 6= t′. In AR-1, observation 1 and observation 2
have a correlation of α. Observation 2 and observation 3 also have a correlation
of α. Observation 1 and observation 3 have a correlation of α2, which is a func-
tion of how 1 and 2 are correlated (α) multiplied by how 2 and 3 are correlated
(α). Observation 1 and 4 have a correlation that is a function of the correlation
between 1 and 2, 2 and 3, and 3 and 4, and so forth.

Sample “working” correlation for Stationary AR-1 (Mv=1)
1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′ with t 6= t′.

No constraints are placed on the correlations, which are then estimated from the
data.

� Mv: defaults to 1. It specifies the number of periods of correlation and only needs to
be specified when corstr is "stat_M_dep", "non_stat_M_dep", or "AR-M".

� R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating
it from the data. The argument is used only when corstr is "fixed". The input is a
T × T matrix of correlations, where T is the size of the largest cluster.

Examples

1. Example with Exchangeable Dependence

Attaching the sample turnout dataset:

> data(sanction)

Variable identifying clusters

> sanction$cluster <- c(rep(c(1:15), 5), rep(c(16), 3))

Sorting by cluster

> sorted.sanction <- sanction[order(sanction$cluster), ]

Estimating model and presenting summary:
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> z.out <- zelig(num ~ target + coop, model = "poisson.gee", id = "cluster",

+ data = sorted.sanction, robust = TRUE, corstr = "exchangeable")

> summary(z.out)

Set explanatory variables to their default values:

> x.out <- setx(z.out)

Simulate quantities of interest

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

Generate a plot of quantities of interest:

> plot(s.out)
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The Model

Suppose we have a panel dataset, with Yit denoting the dependent variable of the number
of independent events for a fixed period of time for unit i at time t. Yi is a vector or cluster
of correlated data where yit is correlated with yit′ for some or all t, t′. Note that the model
assumes correlations within i but independence across i.

� The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | λi)

Yit ∼ g(yit | λit)

where f and g are unspecified distributions with means λi and λit. GEE models make
no distributional assumptions and only require three specifications: a mean function,
a variance function, and a correlation structure.

� The systematic component is the mean function, given by:

λit = exp(xitβ)

where xit is the vector of k explanatory variables for unit i at time t and β is the vector
of coefficients.

� The variance function is given by:

Vit = λit

� The correlation structure is defined by a T × T “working” correlation matrix, where
T is the size of the largest cluster. Users must specify the structure of the “working”
correlation matrix a priori. The “working” correlation matrix then enters the variance
term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = λit as the tth
diagonal element, Ri(α) is the“working”correlation matrix, and φ is a scale parameter.
The parameters are then estimated via a quasi-likelihood approach.

� In GEE models, if the mean is correctly specified, but the variance and correlation
structure are incorrectly specified, then GEE models provide consistent estimates of
the parameters and thus the mean function as well, while consistent estimates of the
standard errors can be obtained via a robust “sandwich” estimator. Similarly, if the
mean and variance are correctly specified but the correlation structure is incorrectly
specified, the parameters can be estimated consistently and the standard errors can be
estimated consistently with the sandwich estimator. If all three are specified correctly,
then the estimates of the parameters are more efficient.
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� The robust“sandwich”estimator gives consistent estimates of the standard errors when
the correlations are specified incorrectly only if the number of units i is relatively large
and the number of repeated periods t is relatively small. Otherwise, one should use
the “näıve” model-based standard errors, which assume that the specified correlations
are close approximations to the true underlying correlations. See ? for more details.

Quantities of Interest

� All quantities of interest are for marginal means rather than joint means.

� The method of bootstrapping generally should not be used in GEE models. If you
must bootstrap, bootstrapping should be done within clusters, which is not currently
supported in Zelig. For conditional prediction models, data should be matched within
clusters.

� The expected values (qi$ev) for the GEE poisson model is the mean of simulations
from the stochastic component:

E(Y ) = λc = exp(xcβ),

given draws of β from its sampling distribution, where xc is a vector of values, one for
each independent variable, chosen by the user.

� The first difference (qi$fd) for the GEE poisson model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1) and control
(trit = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yit(trit = 0)], the counterfactual expected value of Yit for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to trit = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "poisson.gee", id, data), then
you may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.
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� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic component, λit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and z-statistics.

– working.correlation: the “working” correlation matrix

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values
specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How To Cite

To cite the poisson.gee Zelig model:

Patrick Lam. 2007. ”poisson.gee: General Estimating Equation for Poisson Re-
gression” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.
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See also

The gee function is part of the gee package by Vincent J. Carey, ported to R by Thomas Lum-
ley and Brian Ripley. Advanced users may wish to refer to help(gee) and help(family).
Sample data are from Martin (1992). Please inquire with Lisa Martin before publishing
results from these data, as this dataset includes errors that have since been corrected.
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12.52 poisson.mixed: Mixed effects poisson Regression

Use generalized multi-level linear regression if you have covariates that are grouped according
to one or more classification factors. Poisson regression applies to dependent variables that
represent the number of independent events that occur during a fixed period of time.

While generally called multi-level models in the social sciences, this class of models is often
referred to as mixed-effects models in the statistics literature and as hierarchical models in a
Bayesian setting. This general class of models consists of linear models that are expressed as
a function of both fixed effects, parameters corresponding to an entire population or certain
repeatable levels of experimental factors, and random effects, parameters corresponding to
individual experimental units drawn at random from a population.

Syntax

z.out <- zelig(formula= y ~ x1 + x2 + tag(z1 + z2 | g),

data=mydata, model="poisson.mixed")

z.out <- zelig(formula= list(mu=y ~ xl + x2 + tag(z1, gamma | g),

gamma= ~ tag(w1 + w2 | g)), data=mydata, model="poisson.mixed")

Inputs

zelig() takes the following arguments for mixed:

� formula: a two-sided linear formula object describing the systematic component of
the model, with the response on the left of a ˜ operator and the fixed effects terms,
separated by + operators, on the right. Any random effects terms are included with
the notation tag(z1 + ... + zn | g) with z1 + ... + zn specifying the model
for the random effects and g the grouping structure. Random intercept terms are
included with the notation tag(1 | g).
Alternatively, formula may be a list where the first entry, mu, is a two-sided linear
formula object describing the systematic component of the model, with the repsonse
on the left of a˜operator and the fixed effects terms, separated by + operators, on the
right. Any random effects terms are included with the notation tag(z1, gamma | g)

with z1 specifying the individual level model for the random effects, g the grouping
structure and gamma references the second equation in the list. The gamma equation is
one-sided linear formula object with the group level model for the random effects on
the right side of a˜operator. The model is specified with the notation tag(w1 + ...

+ wn | g) with w1 + ... + wn specifying the group level model and g the grouping
structure.

Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:
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� data: An optional data frame containing the variables named in formula. By default,
the variables are taken from the environment from which zelig() is called.

� na.action: A function that indicates what should happen when the data contain NAs.
The default action (na.fail) causes zelig() to print an error message and terminate
if there are any incomplete observations.

Additionally, users may with to refer to lmer in the package lme4 for more information,
including control parameters for the estimation algorithm and their defaults.

Examples

1. Basic Example

Attach sample data:

> data(homerun)

Estimate model:

> z.out1 <- zelig(homeruns ~ player + tag(player - 1 | month),

+ data = homerun, model = "poisson.mixed")

Summarize regression coefficients and estimated variance of random effects:

> summary(z.out1)

Set explanatory variables to their default values:

> x.out <- setx(z.out1)

Simulate draws using the default bootstrap method and view simulated quantities of
interest:

> s.out1 <- sim(z.out1, x = x.out)

> summary(s.out1)

Mixed effects Poisson Regression Model

Let Yij be the number of independent events that occur during a fixed time period, realized
for observation j in group i as yij, which takes any non-negative integer as its value, for
i = 1, . . . ,M , j = 1, . . . , ni.
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� The stochastic component is described by a Poisson distribution with mean and variance
parameter λij.

Yij ∼ Poisson(yij|λij) =
exp(−λij)λ

yij

ij

yij!

where
yij = 0, 1, . . .

� The q-dimensional vector of random effects, bi, is restricted to be mean zero, and
therefore is completely characterized by the variance covarance matrix Ψ, a (q × q)
symmetric positive semi-definite matrix.

bi ∼ Normal(0,Ψ)

� The systematic component is

λij ≡ exp(Xijβ + Zijbi)

where Xij is the (ni × p ×M) array of known fixed effects explanatory variables, β
is the p-dimensional vector of fixed effects coefficients, Zij is the (ni × q ×M) array
of known random effects explanatory variables and bi is the q-dimensional vector of
random effects.

Quantities of Interest

� The predicted values (qi$pr) are draws from the poisson distribution defined by mean
λij, for

λij = exp(Xijβ + Zijbi)

given Xij and Zij and simulations of of β and bi from their posterior distributions.
The estimated variance covariance matrices are taken as correct and are themselves
not simulated.

� The expected values (qi$ev) is the mean of simulations of the stochastic component
given draws of β from its posterior:

E(Yij|Xij) = λij = exp(Xijβ).

� The first difference (qi$fd) is given by the difference in expected values, conditional
on Xij and X ′

ij, representing different values of the explanatory variables.

FD(Yij|Xij, X
′
ij) = E(Yij|Xij)− E(Yij|X ′

ij)
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� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− ̂Yij(tij = 0)},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control
(tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
Yij(tij = 0), the counterfactual predicted value of Yij for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to tij = 0.

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− E[Yij(tij = 0)]},

where tij is a binary explanatory variable defining the treatment (tij = 1) and con-
trol (tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
E[Yij(tij = 0)], the counterfactual expected value of Yij for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to tij = 0.

Output Values

The output of each Zelig command contains useful information which you may view. You
may examine the available information in z.out by using slotNames(z.out), see the fixed
effect coefficients by using summary(z.out)@coefs, and a default summary of information
through summary(z.out). Other elements available through the operator are listed below.

� From the zelig() output stored in summary(z.out), you may extract:

– fixef: numeric vector containing the conditional estimates of the fixed effects.

– ranef: numeric vector containing the conditional modes of the random effects.

– frame: the model frame for the model.

� From the sim() output stored in s.out, you may extract quantities of interest stored
in a data frame:

– qi$pr: the simulated predicted values drawn from the distributions defined by
the expected values.

– qi$ev: the simulated expected values for the specified values of x.
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– qi$fd: the simulated first differences in the expected values for the values specified
in x and x1.

– qi$ate.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

– qi$ate.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the logit.mixed Zelig model:

Delia Bailey and Ferdinand Alimadhi. 2007. ”logit.mixed: Mixed effects logis-
tic model” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Mixed effects poisson regression is part of lme4 package by Douglas M. Bates (Bates 2007).
For a detailed discussion of mixed-effects models, please see ?
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12.53 ologit: Ordinal Logistic Regression for Ordered

Categorical Dependent Variables

Use the ordinal logit regression model if your dependent variable is ordered and categorical,
either in the form of integer values or character strings.

Syntax

> z.out <- zelig(as.factor(Y) ~ X1 + X2, model = "ologit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

If Y takes discrete integer values, the as.factor() command will order automatically order
the values. If Y takes on values composed of character strings, such as “strongly agree”,
“agree”, and “disagree”, as.factor() will order the values in the order in which they appear
in Y. You will need to replace your dependent variable with a factored variable prior to
estimating the model through zelig(). See Section 2 for more information on creating
ordered factors and Example 1 below.

Example

1. Creating An Ordered Dependent Variable

Load the sample data:

> data(sanction)

Create an ordered dependent variable:

> sanction$ncost <- factor(sanction$ncost, ordered = TRUE, levels = c("net gain",

+ "little effect", "modest loss", "major loss"))

Estimate the model:

> z.out <- zelig(ncost ~ mil + coop, model = "ologit", data = sanction)

Set the explanatory variables to their observed values:

> x.out <- setx(z.out, fn = NULL)

Simulate fitted values given x.out and view the results:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)
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2. First Differences

Using the sample data sanction, estimate the empirical model and returning the
coefficients:

> z.out <- zelig(as.factor(cost) ~ mil + coop, model = "ologit",

+ data = sanction)

> summary(z.out)

Set the explanatory variables to their means, with mil set to 0 (no military action in
addition to sanctions) in the baseline case and set to 1 (military action in addition to
sanctions) in the alternative case:

> x.low <- setx(z.out, mil = 0)

> x.high <- setx(z.out, mil = 1)

Generate simulated fitted values and first differences, and view the results:

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

Model

Let Yi be the ordered categorical dependent variable for observation i that takes one of the
integer values from 1 to J where J is the total number of categories.

� The stochastic component begins with an unobserved continuous variable, Y ∗
i , which

follows the standard logistic distribution with a parameter µi,

Y ∗
i ∼ Logit(y∗i | µi),

to which we add an observation mechanism

Yi = j if τj−1 ≤ Y ∗
i ≤ τj for j = 1, . . . , J.

where τl (for l = 0, . . . , J) are the threshold parameters with τl < τm for all l < m and
τ0 = −∞ and τJ = ∞.

� The systematic component has the following form, given the parameters τj and β, and
the explanatory variables xi:

Pr(Y ≤ j) = Pr(Y ∗ ≤ τj) =
exp(τj − xiβ)

1 + exp(τj − xiβ)
,

which implies:

πj =
exp(τj − xiβ)

1 + exp(τj − xiβ)
− exp(τj−1 − xiβ)

1 + exp(τj−1 − xiβ)
.

450



Quantities of Interest

� The expected values (qi$ev) for the ordinal logit model are simulations of the predicted
probabilities for each category:

E(Y = j) = πj =
exp(τj − xiβ)

1 + exp(τj − xiβ)
− exp(τj−1 − xiβ)

1 + exp(τj−1 − xiβ)
,

given a draw of β from its sampling distribution.

� The predicted value (qi$pr) is drawn from the logit distribution described by µi, and
observed as one of J discrete outcomes.

� The difference in each of the predicted probabilities (qi$fd) is given by

Pr(Y = j | x1) − Pr(Y = j | x) for j = 1, . . . , J.

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1

nj

nj∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of treated observations in category j.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1

nj

nj∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups, and nj is the number of treated observations in category j.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "ologit", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.
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– zeta: a vector containing the estimated class boundaries τj.

– deviance: the residual deviance.

– fitted.values: the n× J matrix of in-sample fitted values.

– df.residual: the residual degrees of freedom.

– edf: the effective degrees of freedom.

– Hessian: the Hessian matrix.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
and t-statistics.

� From the sim() output object s.out, you may extract quantities of interest arranged
as arrays. Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x, indexed
by simulation × quantity × x-observation (for more than one x-observation).

– qi$pr: the simulated predicted values drawn from the distribution defined by the
expected probabilities, indexed by simulation × x-observation.

– qi$fd: the simulated first difference in the predicted probabilities for the values
specified in x and x1, indexed by simulation × quantity × x-observation (for more
than one x-observation).

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the poisson.net Zelig model:

Skyler J. Cranmer. 2007. ”poisson.net: Social Network Poisson Regression for
Event Count Dependent Variables” in Kosuke Imai, Gary King, and Olivia
Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/
zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.
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See also

The network normal regression is part of the netglm package by Skyler J. Cranmer and
is built using some of the functionality of the sna package by Carter T. Butts (Butts and
Carley 2001).In addition, advanced users may wish to refer to help(poisson.net). Sample
data are fictional.
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12.54 poisson.survey: Survey-Weighted Poisson Regres-

sion for Event Count Dependent Variables

The survey-weighted poisson regression model is appropriate for survey data obtained using
complex sampling techniques, such as stratified random or cluster sampling (e.g., not sim-
ple random sampling). Like the conventional poisson regression model (see Section 12.48),
survey-weighted poisson regression specifies a dependent variable representing the number of
independent events that occur during a fixed period of time as function of a set of explana-
tory variables. The survey-weighted poisson model reports estimates of model parameters
identical to conventional poisson estimates, but uses information from the survey design to
correct variance estimates.

The poisson.survey model accommodates three common types of complex survey data.
Each method listed here requires selecting specific options which are detailed in the “Addi-
tional Inputs” section below.

1. Survey weights: Survey data are often published along with weights for each obser-
vation. For example, if a survey intentionally over-samples a particular type of case,
weights can be used to correct for the over-representation of that type of case in the
dataset. Survey weights come in two forms:

(a) Probability weights report the probability that each case is drawn from the popu-
lation. For each stratum or cluster, this is computed as the number of observations
in the sample drawn from that group divided by the number of observations in
the population in the group.

(b) Sampling weights are the inverse of the probability weights.

2. Strata/cluster identification: A complex survey dataset may include variables that
identify the strata or cluster from which observations are drawn. For stratified random
sampling designs, observations may be nested in different strata. There are two ways
to employ these identifiers:

(a) Use finite population corrections to specify the total number of cases in the stra-
tum or cluster from which each observation was drawn.

(b) For stratified random sampling designs, use the raw strata ids to compute sam-
pling weights from the data.

3. Replication weights: To preserve the anonymity of survey participants, some sur-
veys exclude strata and cluster ids from the public data and instead release only pre-
computed replicate weights.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "poisson.survey", data = mydata)
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> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard zelig inputs (see Section ??), survey-weighted poisson models
accept the following optional inputs:

1. Datasets that include survey weights:.

� probs: An optional formula or numerical vector specifying each case’s probability
weight, the probability that the case was selected. Probability weights need not
(and, in most cases, will not) sum to one. Cases with lower probability weights
are weighted more heavily in the computation of model coefficients.

� weights: An optional numerical vector specifying each case’s sample weight, the
inverse of the probability that the case was selected. Sampling weights need not
(and, in most cases, will not) sum to one. Cases with higher sampling weights are
weighted more heavily in the computation of model coefficients.

2. Datasets that include strata/cluster identifiers:

� ids: An optional formula or numerical vector identifying the cluster from which
each observation was drawn (ordered from largest level to smallest level). For
survey designs that do not involve cluster sampling, ids defaults to NULL.

� fpc: An optional numerical vector identifying each case’s frequency weight, the
total number of units in the population from which each observation was sampled.

� strata: An optional formula or vector identifying the stratum from which each
observation was sampled. Entries may be numerical, logical, or strings. For survey
designs that do not involve cluster sampling, strata defaults to NULL.

� nest: An optional logical value specifying whether primary sampling unites (PSUs)
have non-unique ids across multiple strata. nest=TRUE is appropriate when PSUs
reuse the same identifiers across strata. Otherwise, nest defaults to FALSE.

� check.strata: An optional input specifying whether to check that clusters are
nested in strata. If check.strata is left at its default, !nest, the check is not
performed. If check.strata is specified as TRUE, the check is carried out.

3. Datasets that include replication weights:

� repweights: A formula or matrix specifying replication weights, numerical vec-
tors of weights used in a process in which the sample is repeatedly re-weighted
and parameters are re-estimated in order to compute the variance of the model
parameters.
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� type: A string specifying the type of replication weights being used. This input
is required if replicate weights are specified. The following types of replication
weights are recognized: "BRR", "Fay", "JK1", "JKn", "bootstrap", or "other".

� weights: An optional vector or formula specifying each case’s sample weight, the
inverse of the probability that the case was selected. If a survey includes both
sampling weights and replicate weights separately for the same survey, both should
be included in the model specification. In these cases, sampling weights are used
to correct potential biases in in the computation of coefficients and replication
weights are used to compute the variance of coefficient estimates.

� combined.weights: An optional logical value that should be specified as TRUE if
the replicate weights include the sampling weights. Otherwise, combined.weights
defaults to FALSE.

� rho: An optional numerical value specifying a shrinkage factor for replicate weights
of type "Fay".

� bootstrap.average: An optional numerical input specifying the number of it-
erations over which replicate weights of type "bootstrap" were averaged. This
input should be left as NULL for "bootstrap" weights that were not were created
by averaging.

� scale: When replicate weights are included, the variance is computed as the sum
of squared deviations of the replicates from their mean. scale is an optional
overall multiplier for the standard deviations.

� rscale: Like scale, rscale specifies an optional vector of replicate-specific mul-
tipliers for the squared deviations used in variance computation.

� fpc: For models in which "JK1", "JKn", or "other" replicates are specified, fpc
is an optional numerical vector (with one entry for each replicate) designating the
replicates’ finite population corrections.

� fpctype: When a finite population correction is included as an fpc input, fpctype
is a required input specifying whether the input to fpc is a sampling fraction
(fpctype="fraction") or a direct correction (fpctype="correction").

� return.replicates: An optional logical value specifying whether the replicates
should be returned as a component of the output. return.replicates defaults
to FALSE.

Examples

1. A dataset that includes survey weights:

Attach the sample data:

> data(api, package = "survey")
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Suppose that a dataset included a variable reporting the number of times a new student
enrolled during the previous school year (enroll), a measure of each school’s academic
performance (api99), an indicator for whether each school holds classes year round
(year.rnd), and sampling weights computed by the survey house (pw). Estimate a
model that regresses enroll on api99 and year.rnd:

> z.out1 <- zelig(enroll ~ api99 + yr.rnd, model = "poisson.survey",

+ weights = ~pw, data = apistrat)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, and set a high (80th
percentile) and low (20th percentile) value for the measure of academic performance:

> x.low <- setx(z.out1, api99 = quantile(apistrat$api99, 0.2))

> x.high <- setx(z.out1, api99 = quantile(apistrat$api99, 0.8))

Generate first differences for the effect of high versus low concentrations of children
receiving subsidized meals on the probability of holding school year-round:

> s.out1 <- sim(z.out1, x = x.low, x1 = x.high)

> summary(s.out1)

Generate a visual summary of the quantities of interest:

> plot(s.out1)
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2. A dataset that includes strata/cluster identifiers:

Suppose that the survey house that provided the dataset used in the previous example
excluded sampling weights but made other details about the survey design available. A
user can still estimate a model without sampling weights that instead uses inputs that
identify the stratum and/or cluster to which each observation belongs and the size of
the finite population from which each observation was drawn.

Continuing the example above, suppose the survey house drew at random a fixed
number of elementary schools, a fixed number of middle schools, and a fixed number
of high schools. If the variable stype is a vector of characters ("E" for elementary
schools, "M" for middle schools, and "H" for high schools) that identifies the type of
school each case represents and fpc is a numerical vector that identifies for each case
the total number of schools of the same type in the population, then the user could
estimate the following model:

> z.out2 <- zelig(enroll ~ api99 + yr.rnd, model = "poisson.survey",

+ data = apistrat, strata = ~stype, fpc = ~fpc)
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Summarize the regression output:

> summary(z.out2)

The coefficient estimates for this example are identical to the point estimates in the
first example, when pre-existing sampling weights were used. When sampling weights
are omitted, they are estimated automatically for "poisson.survey" models based on
the user-defined description of sampling designs.

Moreover, because the user provided information about the survey design, the standard
error estimates are lower in this example than in the previous example, in which the
user omitted variables pertaining to the details of the complex survey design.

3. A dataset that includes replication weights:

Consider a dataset that includes information for a sample of hospitals about the number
of out-of-hospital cardiac arrests that each hospital treats and the number of patients
who arrive alive at each hospital:

> data(scd, package = "survey")

Survey houses sometimes supply replicate weights (in lieu of details about the survey
design). For the sake of illustrating how replicate weights can be used as inputs in
normal.survey models, create a set of balanced repeated replicate (BRR) weights:

> BRRrep <- 2 * cbind(c(1, 0, 1, 0, 1, 0), c(1, 0, 0, 1, 0, 1),

+ c(0, 1, 1, 0, 0, 1), c(0, 1, 0, 1, 1, 0))

Estimate a model that regresses the count of patients who arrived alive at the hospital
last year on the number of patients treated for cardiac arrests, using the BRR replicate
weights in BRRrep to compute standard errors:

> z.out3 <- zelig(alive ~ arrests, model = "poisson.survey", repweights = BRRrep,

+ type = "BRR", data = scd)

> summary(z.out3)

Summarize the regression coefficients:

> summary(z.out3)

Set the explanatory variable arrests at its 20th and 80th quantiles:

> x.low <- setx(z.out3, arrests = quantile(scd$arrests, 0.2))

> x.high <- setx(z.out3, arrests = quantile(scd$arrests, 0.8))

Generate first differences for the effect of high versus low cardiac arrests on the count
of patients who arrive alive:

> s.out3 <- sim(z.out3, x = x.high, x1 = x.low)
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> summary(s.out3)

Generate a visual summary of quantities of interest:

> plot(s.out3)
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Model

Let Yi be the number of independent events that occur during a fixed time period. This
variable can take any non-negative integer.

� The Poisson distribution has stochastic component

Yi ∼ Poisson(λi),

where λi is the mean and variance parameter.
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� The systematic component is
λi = exp(xiβ),

where xi is the vector of explanatory variables, and β is the vector of coefficients.

Variance

When replicate weights are not used, the variance of the coefficients is estimated as

Σ̂

[
n∑

i=1

(1− πi)

π2
i

(Xi(Yi − µi))
′(Xi(Yi − µi)) + 2

n∑
i=1

n∑
j=i+1

(πij − πiπj)

πiπjπij

(Xi(Yi − µi))
′(Xj(Yj − µj))

]
Σ̂

where πi is the probability of case i being sampled, Xi is a vector of the values of the
explanatory variables for case i, Yi is value of the dependent variable for case i, µ̂i is the
predicted value of the dependent variable for case i based on the linear model estimates,
and Σ̂ is the conventional variance-covariance matrix in a parametric glm. This statistic
is derived from the method for estimating the variance of sums described in Binder (1983)
and the Horvitz-Thompson estimator of the variance of a sum described in Horvitz and
Thompson (1952).

When replicate weights are used, the model is re-estimated for each set of replicate
weights, and the variance of each parameter is estimated by summing the squared deviations
of the replicates from their mean.

Quantities of Interest

� The expected value (qi$ev) is the mean of simulations from the stochastic component,

E(Y ) = λi = exp(xiβ),

given draws of β from its sampling distribution.

� The predicted value (qi$pr) is a random draw from the poisson distribution defined
by mean λi.

� The first difference in the expected values (qi$fd) is given by:

FD = E(Y |x1)− E(Y | x)

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
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E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "poisson.survey", data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: a vector of the fitted values for the systemic component λ.

– linear.predictors: a vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.
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– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values given the specified values of x.

– qi$pr: the simulated predicted values drawn from the distributions defined by λi.

– qi$fd: the simulated first differences in the expected values given the specified
values of x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

When users estimate poisson.survey models with replicate weights in Zelig, an object
called .survey.prob.weights is created in the global environment. Zelig will over-write
any existing object with that name, and users are therefore advised to re-name any object
called .survey.prob.weights before using poisson.survey models in Zelig.

How to Cite

To cite the poisson.survey Zelig model:

Nicholas Carnes. 2008. ”poisson.survey: Survey-Weighted Poisson Regression for
Event Count Dependent Variables” in Kosuke Imai, Gary King, and Olivia
Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/
zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Survey-weighted linear models and the sample data used in the examples above are a part
of the survey package by Thomas Lumley. Users may wish to refer to the help files for
the three functions that Zelig draws upon when estimating survey-weighted models, namely,
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help(svyglm), help(svydesign), and help(svrepdesign). The Gamma model is part of
the stats package by Venables and Ripley (2002). Advanced users may wish to refer to
help(glm) and help(family), as well as McCullagh and Nelder (1989).

afterpkgs, echo=FALSE = after<-search() torm<-setdiff(after,before) for (pkg in torm)
detach(pos=match(pkg,search())) @
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12.55 probit: Probit Regression for Dichotomous De-

pendent Variables

Use probit regression to model binary dependent variables specified as a function of a set of
explanatory variables. For a Bayesian implementation of this model, see Section 12.56.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "probit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out, x1 = NULL)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for probit
regression:

� robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard
errors via the sandwich package (see Zeileis (2004)). The default type of robust stan-
dard error is heteroskedastic and autocorrelation consistent (HAC), and assumes that
observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

* "vcovHAC": (default if robust = TRUE) HAC standard errors.

* "kernHAC": HAC standard errors using the weights given in Andrews (1991).

* "weave": HAC standard errors using the weights given in Lumley and Hea-
gerty (1999).

– order.by: defaults to NULL (the observations are chronologically ordered as in the
original data). Optionally, you may specify a vector of weights (either as order.by
= z, where z exists outside the data frame; or as order.by = ~z, where z is a
variable in the data frame). The observations are chronologically ordered by the
size of z.

– ...: additional options passed to the functions specified in method. See the
sandwich library and Zeileis (2004) for more options.

Examples

Attach the sample turnout dataset:

> data(turnout)

Estimate parameter values for the probit regression:
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> z.out <- zelig(vote ~ race + educate, model = "probit", data = turnout)

> summary(z.out)

Set values for the explanatory variables to their default values.

> x.out <- setx(z.out)

Simulate quantities of interest from the posterior distribution.

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

Model

Let Yi be the observed binary dependent variable for observation i which takes the value of
either 0 or 1.

� The stochastic component is given by

Yi ∼ Bernoulli(πi),

where πi = Pr(Yi = 1).

� The systematic component is
πi = Φ(xiβ)

where Φ(µ) is the cumulative distribution function of the Normal distribution with
mean 0 and unit variance.

Quantities of Interest

� The expected value (qi$ev) is a simulation of predicted probability of success

E(Y ) = πi = Φ(xiβ),

given a draw of β from its sampling distribution.

� The predicted value (qi$pr) is a draw from a Bernoulli distribution with mean πi.

� The first difference (qi$fd) in expected values is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

� The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1)/Pr(Y = 1 | x).
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� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "probit", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: a vector of the in-sample fitted values.

– linear.predictors: a vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.
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– data: the name of the input data frame.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values, or predicted probabilities, for the specified
values of x.

– qi$pr: the simulated predicted values drawn from the distributions defined by
the predicted probabilities.

– qi$fd: the simulated first differences in the predicted probabilities for the values
specified in x and x1.

– qi$rr: the simulated risk ratio for the predicted probabilities simulated from x

and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the probit Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”probit: Probit Regression for
Dichotomous Dependent Variables” in Kosuke Imai, Gary King, and Olivia
Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/
zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.
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See also

The probit model is part of the stats package by Venables and Ripley (2002). Advanced
users may wish to refer to help(glm) and help(family), as well as McCullagh and Nelder
(1989). Robust standard errors are implemented via the sandwich package by Zeileis (2004).
Sample data are from King et al. (2000).
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12.56 probit.bayes: Bayesian Probit Regression

Use the probit regression model for model binary dependent variables specified as a function
of a set of explanatory variables. The model is estimated using a Gibbs sampler. For other
models suitable for binary response variables, see Bayesian logistic regression(Section 12.23),
maximum likelihood logit regression (Section 12.22), and maximum likelihood probit regres-
sion (Section 12.55).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "probit.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

Using the following arguments to monitor the Markov chains:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).

� mcmc: number of the MCMC iterations after burnin (defaults to 10,000).

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed of 12345.

� beta.start: starting values for the Markov chain, either a scalar or vector with length
equal to the number of estimated coefficients. The default is NA, such that the maximum
likelihood estimates are used as the starting values.

Use the following parameters to specify the model’s priors:

� b0: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value,
that value will be the prior mean for all the coefficients. The default is 0.

� B0: prior precision parameter for the coefficients, either a square matrix (with the
dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that
value times an identity matrix will be the prior precision parameter. The default is 0,
which leads to an improper prior.

Use the following arguments to specify optional output for the model:
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� bayes.resid: defaults to FALSE. If TRUE, the latent Bayesian residuals for all observa-
tions are returned. Alternatively, users can specify a vector of observations for which
the latent residuals should be returned.

Zelig users may wish to refer to help(MCMCprobit) for more information.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.

Examples

1. Basic Example
Attaching the sample dataset:

> data(turnout)

Estimating the probit regression using probit.bayes:

> z.out <- zelig(vote ~ race + educate, model = "probit.bayes",

+ data = turnout, verbose = TRUE)

Checking for convergence before summarizing the estimates:

471



> geweke.diag(z.out$coefficients)

> heidel.diag(z.out$coefficients)

> raftery.diag(z.out$coefficients)

> summary(z.out)

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given: x.out

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

2. Simulating First Differences
Estimating the first difference (and risk ratio) in individual’s probability of voting when
education is set to be low (25th percentile) versus high (75th percentile) while all the
other variables are held at their default values:

> x.high <- setx(z.out, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

Model

Let Yi be the binary dependent variable for observation i which takes the value of either 0
or 1.

� The stochastic component is given by

Yi ∼ Bernoulli(πi)

= πYi
i (1− πi)

1−Yi ,

where πi = Pr(Yi = 1).

� The systematic component is given by

πi = Φ(xiβ),

where Φ(·) is the cumulative density function of the standard Normal distribution with
mean 0 and variance 1, xi is the vector of k explanatory variables for observation i,
and β is the vector of coefficients.
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� The prior for β is given by

β ∼ Normalk
(
b0, B

−1
0

)
where b0 is the vector of means for the k explanatory variables and B0 is the k × k
precision matrix (the inverse of a variance-covariance matrix).

Quantities of Interest

� The expected values (qi$ev) for the probit model are the predicted probability of a
success:

E(Y | X) = πi = Φ(xiβ),

given the posterior draws of β from the MCMC iterations.

� The predicted values (qi$pr) are draws from the Bernoulli distribution with mean
equal to the simulated expected value πi.

� The first difference (qi$fd) for the probit model is defined as

FD = Pr(Y = 1 | X1)− Pr(Y = 1 | X).

� The risk ratio (qi$rr)is defined as

RR = Pr(Y = 1 | X1) / Pr(Y = 1 | X).

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is

1∑
ti

∑
i:ti=1

[Yi(ti = 1)− E[Yi(ti = 0)]],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups.

� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group is

1∑
ti

∑
i:ti=1

[Yi(ti = 1)− ̂Yi(ti = 0)],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups.
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Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(y ~ x, model = "probit.bayes", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated parame-
ters.

– zelig.data: the input data frame if save.data = TRUE.

– bayes.residuals: When bayes.residual is TRUE or a set of observation num-
bers is given, this object contains the posterior draws of the latent Bayesian
residuals of all the observations or the observations specified by the user.

– seed: the random seed used in the model.

� From the sim() output object s.out:

– qi$ev: the simulated expected values (probabilities) for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected values for the values specified
in x and x1.

– qi$rr: the simulated risk ratio for the expected values simulated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the probit.bayes Zelig model:

Ben Goodrich and Ying Lu. 2007. ”probit.bayes: Bayesian Probit Regression for
Dichotomous Dependent Variables” in Kosuke Imai, Gary King, and Olivia
Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/
zelig
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To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Bayesian probit regression is part of the MCMCpack library by Andrew D. Martin and Kevin
M. Quinn (Martin and Quinn 2005). The convergence diagnostics are part of the CODA
library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines (Plummer et al.
2005).
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12.57 probit.gam: Generalized Additive Model for Di-

chotomous Dependent Variables

This function runs a nonparametric Generalized Additive Model (GAM) for dichotomous
dependent variables.

Syntax

> z.out <- zelig(y ~ x1 + s(x2), model = "probit.gam", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Where s() indicates a variable to be estimated via nonparametric smooth. All variables for
which s() is not specified, are estimated via standard parametric methods.

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for GAM
models.

� method: Controls the fitting method to be used. Fitting methods are selected via a
list environment within method=gam.method(). See gam.method() for details.

� scale: Generalized Cross Validation (GCV) is used if scale = 0 (see the “Model”
section for details) except for Logit models where a Un-Biased Risk Estimator (UBRE)
(also see the “Model” section for details) is used with a scale parameter assumed to be
1. If scale is greater than 1, it is assumed to be the scale parameter/variance and
UBRE is used. If scale is negative GCV is used.

� knots: An optional list of knot values to be used for the construction of basis functions.

� H: A user supplied fixed quadratic penalty on the parameters of the GAM can be
supplied with this as its coefficient matrix. For example, ridge penalties can be added
to the parameters of the GAM to aid in identification on the scale of the linear predictor.

� sp: A vector of smoothing parameters for each term.

� ...: additional options passed to the probit.gam model. See the mgcv library for
details.

Examples

1. Basic Example

Create some count data:
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> set.seed(0); n <- 400; sig <- 2;

> x0 <- runif(n, 0, 1); x1 <- runif(n, 0, 1)

> x2 <- runif(n, 0, 1); x3 <- runif(n, 0, 1)

> g <- (f-5)/3

> g <- binomial()$linkinv(g)

> y <- rbinom(g,1,g)

> my.data <- as.data.frame(cbind(y, x0, x1, x2, x3))

Estimate the model, summarize the results, and plot nonlinearities:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), model = "probit.gam",

+ data = my.data)

> summary(z.out)

> plot(z.out, pages = 1, residuals = TRUE)

Note that the plot() function can be used after model estimation and before simulation
to view the nonlinear relationships in the independent variables:

Set values for the explanatory variables to their default (mean/mode) values, then
simulate, summarize and plot quantities of interest:

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low values (20th percentile) and
high values (80th percentile) of the explanatory variable x3 while all the other variables
are held at their default (mean/mode) values.

> x.high <- setx(z.out, x3 = quantile(my.data$x3, 0.8))

> x.low <- setx(z.out, x3 = quantile(my.data$x3, 0.2))

> s.out <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out)

> plot(s.out)

3. Variations in GAM model specification. Note that setx and sim work as shown in the
above examples for any GAM model. As such, in the interest of parsimony, I will not
re-specify the simulations of quantities of interest.

An extra ridge penalty (useful with convergence problems):
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> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), H = diag(0.5,

+ 37), model = "probit.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1, residuals = TRUE)

Set the smoothing parameter for the first term, estimate the rest:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), sp = c(0.01,

+ -1, -1, -1), model = "probit.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1)

Set lower bounds on smoothing parameters:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), min.sp = c(0.001,

+ 0.01, 0, 10), model = "probit.gam", data = my.data)
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> summary(z.out)

> plot(z.out, pages = 1)

A GAM with 3df regression spline term & 2 penalized terms:

> z.out <- zelig(y ~ s(x0, k = 4, fx = TRUE, bs = "tp") + s(x1,

+ k = 12) + s(x2, k = 15), model = "probit.gam", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1)

Model

GAM models use families the same way GLM models do: they specify the distribution and
link function to use in model fitting. In the case of probit.gam a normal link function is
used. Specifically, let Yi be the binary dependent variable for observation i which takes the
value of either 0 or 1.
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� The normal distribution has stochastic component

Yi ∼ Bernoulli(πi)

where πi = Pr(Yi = 1).

� The systematic component is given by:

πi = ΦΦΦ

(
xiβ +

J∑
j=1

fj(Zj)

)
,

where ΦΦΦ(µ) is the cumulative distribution function of the Normal distribution with
mean 0 and unit variance and fj(Zj) for j = 1, . . . J is the set of smooth terms.

Generalized additive models (GAMs) are similar in many respects to generalized linear
models (GLMs). Specifically, GAMs are generally fit by penalized maximum likelihood
estimation and GAMs have (or can have) a parametric component identical to that of a
GLM. The difference is that GAMs also include in their linear predictors a specified sum of
smooth functions.

In this GAM implementation, smooth functions are represented using penalized regression
splines. Two techniques may be used to estimate smoothing parameters: Generalized Cross
Validation (GCV),

n
D

(n−DF )2
, (12.8)

or an Un-Biased Risk Estimator (UBRE) (which is effectively just a rescaled AIC),

D

n
+ 2s

DF

n− s
, (12.9)

where D is the deviance, n is the number of observations, s is the scale parameter, and DF
is the effective degrees of freedom of the model. The use of GCV or UBRE can be set by
the user with the scale command described in the “Additional Inputs” section and in either
case, smoothing parameters are chosen to minimize the GCV or UBRE score for the model.

Estimation for GAM models proceeds as follows: first, basis functions and a set (one
or more) of quadratic penalty coefficient matrices are constructed for each smooth term.
Second, a model matrix is is obtained for the parametric component of the GAM. These
matrices are combined to produce a complete model matrix and a set of penalty matrices
for the smooth terms. Iteratively Reweighted Least Squares (IRLS) is then used to estimate
the model; at each iteration of the IRLS, a penalized weighted least squares model is run
and the smoothing parameters of that model are estimated by GCV or UBRE. This process
is repeated until convergence is achieved.

Further details of the GAM fitting process are given in Wood (2000, 2004, 2006).
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Quantities of Interest

The quantities of interest for the probit.gam model are the same as those for the standard
normal regression.

� The expected value (qi$ev) for the probit.gam model is the mean of simulations from
the stochastic component,

πi = ΦΦΦ

(
xiβ +

J∑
j=1

fj(Zj)

)
.

� The predicted values (qi$pr) are draws from the Binomial distribution with mean
equal to the simulated expected value πi.

� The first difference (qi$fd) for the probit.gam model is defined as

FD = Pr(Y |w1)− Pr(Y |w)

for w = {X,Z}.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "probit.gam", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by us-
ing coefficients(z.out), and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IRLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– method: the fitting method used.

– converged: logical indicating weather the model converged or not.

– smooth: information about the smoothed parameters.

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the input data frame.
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– model: the model matrix used.

� From summary(z.out)(as well as from zelig()), you may extract:

– p.coeff: the coefficients of the parametric components of the model.

– se: the standard errors of the entire model.

– p.table: the coefficients, standard errors, and associated t statistics for the para-
metric portion of the model.

– s.table: the table of estimated degrees of freedom, estimated rank, F statistics,
and p-values for the nonparametric portion of the model.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from
x and x1.

How to Cite

To cite the probit.gam Zelig model:

Skyler J. Cranmer. 2007. ”probit.gam: Generalized Additive Model for Di-
chotomous Dependent Variables” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The gam.logit model is adapted from the mgcv package by Simon N. Wood (Wood 2006).
Advanced users may wish to refer to help(gam), Wood (2004), Wood (2000), and other
documentation accompanying the mgcv package. All examples are reproduced and extended
from mgcv’s gam() help pages.
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12.58 probit.gee: Generalized Estimating Equation for

Probit Regression

The GEE probit estimates the same model as the standard probit regression (appropriate
when you have a dichotomous dependent variable and a set of explanatory variables). Unlike
in probit regression, GEE probit allows for dependence within clusters, such as in longitudinal
data, although its use is not limited to just panel data. The user must first specify a“working”
correlation matrix for the clusters, which models the dependence of each observation with
other observations in the same cluster. The “working” correlation matrix is a T × T matrix
of correlations, where T is the size of the largest cluster and the elements of the matrix
are correlations between within-cluster observations. The appeal of GEE models is that
it gives consistent estimates of the parameters and consistent estimates of the standard
errors can be obtained using a robust “sandwich” estimator even if the “working” correlation
matrix is incorrectly specified. If the “working” correlation matrix is correctly specified,
GEE models will give more efficient estimates of the parameters. GEE models measure
population-averaged effects as opposed to cluster-specific effects (See Zorn (2001)).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "probit.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted by id and
should be ordered within each cluster when appropriate.

Additional Inputs

� robust: defaults to TRUE. If TRUE, consistent standard errors are estimated using a
“sandwich” estimator.

Use the following arguments to specify the structure of the “working” correlations within
clusters:

� corstr: defaults to "independence". It can take on the following arguments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′ with t 6= t′.
It assumes that there is no correlation within the clusters and the model becomes
equivalent to standard probit regression. The “working” correlation matrix is the
identity matrix.

– Fixed (corstr = "fixed"): If selected, the user must define the “working” cor-
relation matrix with the R argument rather than estimating it from the model.
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– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. Choose this option when the correlations are
assumed to be the same for observations of the same |t − t′| periods apart for
|t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. This option relaxes the assumption that the
correlations are the same for all observations of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence (Mv=2)
1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′ with t 6= t′.

Choose this option if the correlations are assumed to be the same for all observa-
tions within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


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– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr = "AR-M"),
you must also specify Mv = m, where m is the number of periods t of de-
pendence. For example, the first order autoregressive model (AR-1) implies
cor(yit, yit′) = α|t−t′|,∀t, t′ with t 6= t′. In AR-1, observation 1 and observation 2
have a correlation of α. Observation 2 and observation 3 also have a correlation
of α. Observation 1 and observation 3 have a correlation of α2, which is a func-
tion of how 1 and 2 are correlated (α) multiplied by how 2 and 3 are correlated
(α). Observation 1 and 4 have a correlation that is a function of the correlation
between 1 and 2, 2 and 3, and 3 and 4, and so forth.

Sample “working” correlation for Stationary AR-1 (Mv=1)
1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′ with t 6= t′.

No constraints are placed on the correlations, which are then estimated from the
data.

� Mv: defaults to 1. It specifies the number of periods of correlation and only needs to
be specified when corstr is "stat_M_dep", "non_stat_M_dep", or "AR-M".

� R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating
it from the data. The argument is used only when corstr is "fixed". The input is a
T × T matrix of correlations, where T is the size of the largest cluster.

Examples

1. Example with Stationary 3 Dependence

Attaching the sample turnout dataset:

> data(turnout)

Variable identifying clusters

> turnout$cluster <- rep(c(1:200), 10)

Sorting by cluster

> sorted.turnout <- turnout[order(turnout$cluster), ]

Estimating parameter values:
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> z.out1 <- zelig(vote ~ race + educate, model = "probit.gee",

+ id = "cluster", data = sorted.turnout, robust = TRUE, corstr = "stat_M_dep",

+ Mv = 3)

Setting values for the explanatory variables to their default values:

> x.out1 <- setx(z.out1)

Simulating quantities of interest:

> s.out1 <- sim(z.out1, x = x.out1)

> summary(s.out1)

> plot(s.out1)
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ty

486



2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low education (25th percentile)
and high education (75th percentile) while all the other variables held at their default
values.

> x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)
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3. Example with Fixed Correlation Structure

User-defined correlation structure
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> corr.mat <- matrix(rep(0.5, 100), nrow = 10, ncol = 10)

> diag(corr.mat) <- 1

Generating empirical estimates:

> z.out2 <- zelig(vote ~ race + educate, model = "probit.gee",

+ id = "cluster", data = sorted.turnout, robust = TRUE,

+ corstr = "fixed", R = corr.mat)

Viewing the regression output:

> summary(z.out2)

The Model

Suppose we have a panel dataset, with Yit denoting the binary dependent variable for unit i
at time t. Yi is a vector or cluster of correlated data where yit is correlated with yit′ for some
or all t, t′. Note that the model assumes correlations within i but independence across i.

� The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | πi)

Yit ∼ g(yit | πit)

where f and g are unspecified distributions with means πi and πit. GEE models make
no distributional assumptions and only require three specifications: a mean function,
a variance function, and a correlation structure.

� The systematic component is the mean function, given by:

πit = Φ(xitβ)

where Φ(µ) is the cumulative distribution function of the Normal distribution with
mean 0 and unit variance, xit is the vector of k explanatory variables for unit i at time
t and β is the vector of coefficients.

� The variance function is given by:

Vit = πit(1− πit)

� The correlation structure is defined by a T × T “working” correlation matrix, where
T is the size of the largest cluster. Users must specify the structure of the “working”
correlation matrix a priori. The “working” correlation matrix then enters the variance
term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = πit(1 − πit) as
the tth diagonal element, Ri(α) is the “working” correlation matrix, and φ is a scale
parameter. The parameters are then estimated via a quasi-likelihood approach.
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� In GEE models, if the mean is correctly specified, but the variance and correlation
structure are incorrectly specified, then GEE models provide consistent estimates of
the parameters and thus the mean function as well, while consistent estimates of the
standard errors can be obtained via a robust “sandwich” estimator. Similarly, if the
mean and variance are correctly specified but the correlation structure is incorrectly
specified, the parameters can be estimated consistently and the standard errors can be
estimated consistently with the sandwich estimator. If all three are specified correctly,
then the estimates of the parameters are more efficient.

� The robust“sandwich”estimator gives consistent estimates of the standard errors when
the correlations are specified incorrectly only if the number of units i is relatively large
and the number of repeated periods t is relatively small. Otherwise, one should use
the “näıve” model-based standard errors, which assume that the specified correlations
are close approximations to the true underlying correlations. See ? for more details.

Quantities of Interest

� All quantities of interest are for marginal means rather than joint means.

� The method of bootstrapping generally should not be used in GEE models. If you
must bootstrap, bootstrapping should be done within clusters, which is not currently
supported in Zelig. For conditional prediction models, data should be matched within
clusters.

� The expected values (qi$ev) for the GEE probit model are simulations of the predicted
probability of a success:

E(Y ) = πc = Φ(xcβ),

given draws of β from its sampling distribution, where xc is a vector of values, one for
each independent variable, chosen by the user.

� The first difference (qi$fd) for the GEE probit model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

� The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1) / Pr(Y = 1 | x).

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

489



where trit is a binary explanatory variable defining the treatment (trit = 1) and control
(trit = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yit(trit = 0)], the counterfactual expected value of Yit for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to trit = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "probit.gee", id, data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic component, πit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and z-statistics.

– working.correlation: the “working” correlation matrix

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values
specified in x and x1.

– qi$rr: the simulated risk ratio for the expected probabilities simulated from x

and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.
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How To Cite

To cite the probit.gee Zelig model:

Patrick Lam. 2007. ”probit.gee: General Estimating Equation for Probit Re-
gression” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The gee function is part of the gee package by Vincent J. Carey, ported to R by Thomas Lum-
ley and Brian Ripley. Advanced users may wish to refer to help(gee) and help(family).
Sample data are from King et al. (2000).
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12.59 probit.mixed: Mixed effects probit Regression

Use generalized multi-level linear regression if you have covariates that are grouped according
to one or more classification factors. The probit model is appropriate when the dependent
variable is dichotomous.

While generally called multi-level models in the social sciences, this class of models is often
referred to as mixed-effects models in the statistics literature and as hierarchical models in a
Bayesian setting. This general class of models consists of linear models that are expressed as
a function of both fixed effects, parameters corresponding to an entire population or certain
repeatable levels of experimental factors, and random effects, parameters corresponding to
individual experimental units drawn at random from a population.

Syntax

z.out <- zelig(formula= y ~ x1 + x2 + tag(z1 + z2 | g),

data=mydata, model="probit.mixed")

z.out <- zelig(formula= list(mu=y ~ xl + x2 + tag(z1, gamma | g),

gamma= ~ tag(w1 + w2 | g)), data=mydata, model="probit.mixed")

Inputs

zelig() takes the following arguments for mixed:

� formula: a two-sided linear formula object describing the systematic component of
the model, with the response on the left of a ˜ operator and the fixed effects terms,
separated by + operators, on the right. Any random effects terms are included with
the notation tag(z1 + ... + zn | g) with z1 + ... + zn specifying the model
for the random effects and g the grouping structure. Random intercept terms are
included with the notation tag(1 | g).
Alternatively, formula may be a list where the first entry, mu, is a two-sided linear
formula object describing the systematic component of the model, with the repsonse
on the left of a˜operator and the fixed effects terms, separated by + operators, on the
right. Any random effects terms are included with the notation tag(z1, gamma | g)

with z1 specifying the individual level model for the random effects, g the grouping
structure and gamma references the second equation in the list. The gamma equation is
one-sided linear formula object with the group level model for the random effects on
the right side of a˜operator. The model is specified with the notation tag(w1 + ...

+ wn | g) with w1 + ... + wn specifying the group level model and g the grouping
structure.

Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:
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� data: An optional data frame containing the variables named in formula. By default,
the variables are taken from the environment from which zelig() is called.

� na.action: A function that indicates what should happen when the data contain NAs.
The default action (na.fail) causes zelig() to print an error message and terminate
if there are any incomplete observations.

Additionally, users may with to refer to lmer in the package lme4 for more information,
including control parameters for the estimation algorithm and their defaults.

Examples

1. Basic Example with First Differences

Attach sample data:

> data(voteincome)

Estimate model:

> z.out1 <- zelig(vote ~ education + age + female + tag(1 |

+ state), data = voteincome, model = "probit.mixed")

Summarize regression coefficients and estimated variance of random effects:

> summary(z.out1)

Set explanatory variables to their default values, with high (80th percentile) and low
(20th percentile) values for education:

> x.high <- setx(z.out1, education = quantile(voteincome$education,

+ 0.8))

> x.low <- setx(z.out1, education = quantile(voteincome$education,

+ 0.2))

Generate first differences for the effect of high versus low education on voting:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)
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Mixed effects probit Regression Model

Let Yij be the binary dependent variable, realized for observation j in group i as yij which
takes the value of either 0 or 1, for i = 1, . . . ,M , j = 1, . . . , ni.

� The stochastic component is described by a Bernoulli distribution with mean vector
πij.

Yij ∼ Bernoulli(yij|πij) = π
yij

ij (1− πij)
1−yij

where
πij = Pr(Yij = 1)

� The q-dimensional vector of random effects, bi, is restricted to be mean zero, and
therefore is completely characterized by the variance covarance matrix Ψ, a (q × q)
symmetric positive semi-definite matrix.

bi ∼ Normal(0,Ψ)

� The systematic component is

πij ≡ Φ(Xijβ + Zijbi)

where Φ(µ) is the cumulative distribution function of the Normal distribution with
mean 0 and unit variance, and
where Xij is the (ni × p ×M) array of known fixed effects explanatory variables, β
is the p-dimensional vector of fixed effects coefficients, Zij is the (ni × q ×M) array
of known random effects explanatory variables and bi is the q-dimensional vector of
random effects.

Quantities of Interest

� The predicted values (qi$pr) are draws from the Binomial distribution with mean
equal to the simulated expected value, πij for

πij = Φ(Xijβ + Zijbi)

given Xij and Zij and simulations of of β and bi from their posterior distributions.
The estimated variance covariance matrices are taken as correct and are themselves
not simulated.

� The expected values (qi$ev) are simulations of the predicted probability of a success
given draws of β from its posterior:

E(Yij|Xij) = πij = Φ(Xijβ).
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� The first difference (qi$fd) is given by the difference in predicted probabilities, condi-
tional on Xij and X ′

ij, representing different values of the explanatory variables.

FD(Yij|Xij, X
′
ij) = Pr(Yij = 1|Xij)− Pr(Yij = 1|X ′

ij)

� The risk ratio (qi$rr) is defined as

RR(Yij|Xij, X
′
ij) =

Pr(Yij = 1|Xij)

Pr(Yij = 1|X ′
ij)

� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− ̂Yij(tij = 0)},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control
(tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
Yij(tij = 0), the counterfactual predicted value of Yij for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to tij = 0.

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− E[Yij(tij = 0)]},

where tij is a binary explanatory variable defining the treatment (tij = 1) and con-
trol (tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
E[Yij(tij = 0)], the counterfactual expected value of Yij for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to tij = 0.

Output Values

The output of each Zelig command contains useful information which you may view. You
may examine the available information in z.out by using slotNames(z.out), see the fixed
effect coefficients by using summary(z.out)@coefs, and a default summary of information
through summary(z.out). Other elements available through the operator are listed below.

� From the zelig() output stored in summary(z.out), you may extract:

– fixef: numeric vector containing the conditional estimates of the fixed effects.
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– ranef: numeric vector containing the conditional modes of the random effects.

– frame: the model frame for the model.

� From the sim() output stored in s.out, you may extract quantities of interest stored
in a data frame:

– qi$pr: the simulated predicted values drawn from the distributions defined by
the expected values.

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences in the expected values for the values specified
in x and x1.

– qi$ate.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

– qi$ate.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the probit.mixed Zelig model:

Delia Bailey and Ferdinand Alimadhi. 2007. ”probit.mixed: Mixed effects pro-
bit model” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Mixed effects probit regression is part of lme4 package by Douglas M. Bates (Bates 2007).
For a detailed discussion of mixed-effects models, please see ?
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12.60 probit.net: Network Probit Regression for Di-

chotomous Proximity Matrix Dependent Vari-

ables

Use network probit regression analysis for a dependent variable that is a binary valued
proximity matrix (a.k.a. sociomatricies, adjacency matrices, or matrix representations of
directed graphs).

Syntax

> z.out <- zelig(y ~ x1 + x2, model = "probit.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Examples

1. Basic Example

Load the sample data (see ?friendship for details on the structure of the network
dataframe):

> data(friendship)

Estimate model:

> z.out <- zelig(friends ~ advice + prestige + perpower, model = "probit.net",

+ data = friendship)

> summary(z.out)

Setting values for the explanatory variables to their default values:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution.

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low personal power (25th per-
centile) and high personal power (75th percentile) while all the other variables are held
at their default values.
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> x.high <- setx(z.out, perpower = quantile(friendship$perpower,

+ prob = 0.75))

> x.low <- setx(z.out, perpower = quantile(friendship$perpower,

+ prob = 0.25))

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)

Model

The probit.net model performs a probit regression of the proximity matrix Y, a m × m
matrix representing network ties, on a set of proximity matrices X. This network regression
model is directly analogous to standard probit regression element-wise on the appropriately
vectorized matrices. Proximity matrices are vectorized by creating Y , a m2 × 1 vector to
represent the proximity matrix. The vectorization which produces the Y vector from the Y
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matrix is performed by simple row-concatenation of Y. For example, if Y is a 15×15 matrix,
the Y1,1 element is the first element of Y , and the Y2,1 element is the second element of Y
and so on. Once the input matrices are vectorized, standard probit regression is performed.

Let Yi be the binary dependent variable, produced by vectorizing a binary proximity
matrix, for observation i which takes the value of either 0 or 1.

� The stochastic component is given by

Yi ∼ Bernoulli(πi)

where πi = Pr(Yi = 1).

� The systematic component is given by:

πi = ΦΦΦ(xiβ).

where ΦΦΦ(µ) is the cumulative distribution function of the Normal distribution with
mean 0 and unit variance.

499



Quantities of Interest

The quantities of interest for the network probit regression are the same as those for the
standard probit regression.

� The expected values (qi$ev) for the probit.net model are simulations of the predicted
probability of a success:

E(Y ) = πi = ΦΦΦ(xiβ),

given draws of β from its sampling distribution.

� The predicted values (qi$pr) are draws from the Binomial distribution with mean
equal to the simulated expected value πi.

� The first difference (qi$fd) for the network probit model is defined as

FD = Pr(Y = 1|x1)− Pr(Y = 1|x)

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, you run z.out <- zelig(y ~ x, model = "probit.net", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by us-
ing z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaikeś Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– bic: the Bayesian Information Criterion (minus twice the maximized log-likelihood
plus the number of coefficients times log n).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE

� From summary(z.out)(as well as from zelig()), you may extract:

– mod.coefficients: the parameter estimates with their associated standard er-
rors, p-values, and t statistics.
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– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from
x and x1.

How to Cite

To cite the probit.net Zelig model:

Skyler J. Cranmer. 2007. ”probit.net: Social Network Probit Regression for
Dichotomous Dependent Variables” in Kosuke Imai, Gary King, and Olivia
Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/
zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The network probit regression is part of the netglm package by Skyler J. Cranmer and is
built using some of the functionality of the sna package by Carter T. Butts (Butts and Carley
2001).In addition, advanced users may wish to refer to help(netpoisson). Sample data are
fictional.

501

http://gking.harvard.edu/zelig
http://gking.harvard.edu/zelig
http://GKing.harvard.edu/zelig


12.61 probit.survey: Survey-Weighted Probit Regres-

sion for Dichotomous Dependent Variables

The survey-weighted probit regression model is appropriate for survey data obtained using
complex sampling techniques, such as stratified random or cluster sampling (e.g., not sim-
ple random sampling). Like the conventional probit regression models (see Section 12.55),
survey-weighted probit regression specifies a dichotomous dependent variable as function of
a set of explanatory variables. The survey-weighted probit model reports estimates of model
parameters identical to conventional probit estimates, but uses information from the survey
design to correct variance estimates.

The probit.survey model accommodates three common types of complex survey data.
Each method listed here requires selecting specific options which are detailed in the “Addi-
tional Inputs” section below.

1. Survey weights: Survey data are often published along with weights for each obser-
vation. For example, if a survey intentionally over-samples a particular type of case,
weights can be used to correct for the over-representation of that type of case in the
dataset. Survey weights come in two forms:

(a) Probability weights report the probability that each case is drawn from the popu-
lation. For each stratum or cluster, this is computed as the number of observations
in the sample drawn from that group divided by the number of observations in
the population in the group.

(b) Sampling weights are the inverse of the probability weights.

2. Strata/cluster identification: A complex survey dataset may include variables that
identify the strata or cluster from which observations are drawn. For stratified random
sampling designs, observations may be nested in different strata. There are two ways
to employ these identifiers:

(a) Use finite population corrections to specify the total number of cases in the stra-
tum or cluster from which each observation was drawn.

(b) For stratified random sampling designs, use the raw strata ids to compute sam-
pling weights from the data.

3. Replication weights: To preserve the anonymity of survey participants, some sur-
veys exclude strata and cluster ids from the public data and instead release only pre-
computed replicate weights.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "probit.survey", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)
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Additional Inputs

In addition to the standard zelig inputs (see Section ??), survey-weighted probit models
accept the following optional inputs:

1. Datasets that include survey weights:.

� probs: An optional formula or numerical vector specifying each case’s probability
weight, the probability that the case was selected. Probability weights need not
(and, in most cases, will not) sum to one. Cases with lower probability weights
are weighted more heavily in the computation of model coefficients.

� weights: An optional numerical vector specifying each case’s sample weight, the
inverse of the probability that the case was selected. Sampling weights need not
(and, in most cases, will not) sum to one. Cases with higher sampling weights are
weighted more heavily in the computation of model coefficients.

2. Datasets that include strata/cluster identifiers:

� ids: An optional formula or numerical vector identifying the cluster from which
each observation was drawn (ordered from largest level to smallest level). For
survey designs that do not involve cluster sampling, ids defaults to NULL.

� fpc: An optional numerical vector identifying each case’s frequency weight, the
total number of units in the population from which each observation was sampled.

� strata: An optional formula or vector identifying the stratum from which each
observation was sampled. Entries may be numerical, logical, or strings. For survey
designs that do not involve cluster sampling, strata defaults to NULL.

� nest: An optional logical value specifying whether primary sampling unites (PSUs)
have non-unique ids across multiple strata. nest=TRUE is appropriate when PSUs
reuse the same identifiers across strata. Otherwise, nest defaults to FALSE.

� check.strata: An optional input specifying whether to check that clusters are
nested in strata. If check.strata is left at its default, !nest, the check is not
performed. If check.strata is specified as TRUE, the check is carried out.

3. Datasets that include replication weights:

� repweights: A formula or matrix specifying replication weights, numerical vec-
tors of weights used in a process in which the sample is repeatedly re-weighted
and parameters are re-estimated in order to compute the variance of the model
parameters.

� type: A string specifying the type of replication weights being used. This input
is required if replicate weights are specified. The following types of replication
weights are recognized: "BRR", "Fay", "JK1", "JKn", "bootstrap", or "other".
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� weights: An optional vector or formula specifying each case’s sample weight, the
inverse of the probability that the case was selected. If a survey includes both
sampling weights and replicate weights separately for the same survey, both should
be included in the model specification. In these cases, sampling weights are used
to correct potential biases in in the computation of coefficients and replication
weights are used to compute the variance of coefficient estimates.

� combined.weights: An optional logical value that should be specified as TRUE if
the replicate weights include the sampling weights. Otherwise, combined.weights
defaults to FALSE.

� rho: An optional numerical value specifying a shrinkage factor for replicate weights
of type "Fay".

� bootstrap.average: An optional numerical input specifying the number of it-
erations over which replicate weights of type "bootstrap" were averaged. This
input should be left as NULL for "bootstrap" weights that were not were created
by averaging.

� scale: When replicate weights are included, the variance is computed as the sum
of squared deviations of the replicates from their mean. scale is an optional
overall multiplier for the standard deviations.

� rscale: Like scale, rscale specifies an optional vector of replicate-specific mul-
tipliers for the squared deviations used in variance computation.

� fpc: For models in which "JK1", "JKn", or "other" replicates are specified, fpc
is an optional numerical vector (with one entry for each replicate) designating the
replicates’ finite population corrections.

� fpctype: When a finite population correction is included as an fpc input, fpctype
is a required input specifying whether the input to fpc is a sampling fraction
(fpctype="fraction") or a direct correction (fpctype="correction").

� return.replicates: An optional logical value specifying whether the replicates
should be returned as a component of the output. return.replicates defaults
to FALSE.

Examples

1. A dataset that includes survey weights:

Attach the sample data:

> data(api, package = "survey")

Suppose that a dataset included a dichotomous indicator for whether each public school
attends classes year round (yr.rnd), a measure of the percentage of students at each
school who receive subsidized meals (meals), a measure of the percentage of students at
each school who are new to to the school (mobility), and sampling weights computed
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by the survey house (pw). Estimate a model that regresses the year-round schooling
indicator on the meals and mobility variables:

> z.out1 <- zelig(yr.rnd ~ meals + mobility, model = "probit.survey",

+ weights = ~pw, data = apistrat)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, and set a high (80th
percentile) and low (20th percentile) value for “meals”:

> x.low <- setx(z.out1, meals = quantile(apistrat$meals, 0.2))

> x.high <- setx(z.out1, meals = quantile(apistrat$meals, 0.8))

Generate first differences for the effect of high versus low concentrations of children
receiving subsidized meals on the probability of holding school year-round:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

Generate a visual summary of the quantities of interest:

> plot(s.out1)
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2. A dataset that includes strata/cluster identifiers:

Suppose that the survey house that provided the dataset used in the previous example
excluded sampling weights but made other details about the survey design available. A
user can still estimate a model without sampling weights that instead uses inputs that
identify the stratum and/or cluster to which each observation belongs and the size of
the finite population from which each observation was drawn.

Continuing the example above, suppose the survey house drew at random a fixed
number of elementary schools, a fixed number of middle schools, and a fixed number
of high schools. If the variable stype is a vector of characters ("E" for elementary
schools, "M" for middle schools, and "H" for high schools) that identifies the type of
school each case represents and fpc is a numerical vector that identifies for each case
the total number of schools of the same type in the population, then the user could
estimate the following model:

> z.out2 <- zelig(yr.rnd ~ meals + mobility, model = "probit.survey",

+ strata = ~stype, fpc = ~fpc, data = apistrat)
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Summarize the regression output:

> summary(z.out2)

The coefficient estimates for this example are identical to the point estimates in the
first example, when pre-existing sampling weights were used. When sampling weights
are omitted, they are estimated automatically for "probit.survey" models based on
the user-defined description of sampling designs.

Moreover, because the user provided information about the survey design, the standard
error estimates are lower in this example than in the previous example, in which the
user omitted variables pertaining to the details of the complex survey design.

3. A dataset that includes replication weights:

Consider a dataset that includes information for a sample of hospitals about the number
of out-of-hospital cardiac arrests that each hospital treats and the number of patients
who arrive alive at each hospital:

> data(scd, package = "survey")

Survey houses sometimes supply replicate weights (in lieu of details about the survey
design). For the sake of illustrating how replicate weights can be used as inputs in
probit.survey models, create a set of balanced repeated replicate (BRR) weights and
an (artificial) dependent variable to simulate an indicator for whether each hospital
was sued:

> BRRrep <- 2 * cbind(c(1, 0, 1, 0, 1, 0), c(1, 0, 0, 1, 0,

+ 1), c(0, 1, 1, 0, 0, 1), c(0, 1, 0, 1, 1, 0))

> scd$sued <- as.vector(c(0, 0, 0, 1, 1, 1))

Estimate a model that regresses the indicator for hospitals that were sued on the num-
ber of patients who arrive alive in each hospital and the number of cardiac arrests that
each hospital treats, using the BRR replicate weights in BRRrep to compute standard
errors.

> z.out3 <- zelig(formula = sued ~ arrests + alive, model = "probit.survey",

+ repweights = BRRrep, type = "BRR", data = scd)

Summarize the regression coefficients:

> summary(z.out3)

Set alive at its mean and set arrests at its 20th and 80th quantiles:

> x.low <- setx(z.out3, arrests = quantile(scd$arrests, 0.2))

> x.high <- setx(z.out3, arrests = quantile(scd$arrests, 0.8))
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Generate first differences for the effect of high versus low cardiac arrests on the prob-
ability that a hospital will be sued:

> s.out3 <- sim(z.out3, x = x.high, x1 = x.low)

> summary(s.out3)

Generate a visual summary of quantities of interest:

> plot(s.out3)
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Model

Let Yi be the observed binary dependent variable for observation i which takes the value of
either 0 or 1.
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� The stochastic component is given by

Yi ∼ Bernoulli(πi),

where πi = Pr(Yi = 1).

� The systematic component is
πi = Φ(xiβ)

where Φ(µ) is the cumulative distribution function of the Normal distribution with
mean 0 and unit variance.

Variance

When replicate weights are not used, the variance of the coefficients is estimated as

Σ̂

[
n∑

i=1

(1− πi)

π2
i

(Xi(Yi − µi))
′(Xi(Yi − µi)) + 2

n∑
i=1

n∑
j=i+1

(πij − πiπj)

πiπjπij

(Xi(Yi − µi))
′(Xj(Yj − µj))

]
Σ̂

where πi is the probability of case i being sampled, Xi is a vector of the values of the
explanatory variables for case i, Yi is value of the dependent variable for case i, µ̂i is the
predicted value of the dependent variable for case i based on the linear model estimates,
and Σ̂ is the conventional variance-covariance matrix in a parametric glm. This statistic
is derived from the method for estimating the variance of sums described in Binder (1983)
and the Horvitz-Thompson estimator of the variance of a sum described in Horvitz and
Thompson (1952).

When replicate weights are used, the model is re-estimated for each set of replicate
weights, and the variance of each parameter is estimated by summing the squared deviations
of the replicates from their mean.

Quantities of Interest

� The expected value (qi$ev) is a simulation of predicted probability of success

E(Y ) = πi = Φ(xiβ),

given a draw of β from its sampling distribution.

� The predicted value (qi$pr) is a draw from a Bernoulli distribution with mean πi.

� The first difference (qi$fd) in expected values is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

� The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1)/Pr(Y = 1 | x).
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� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "probit.survey", data), then you
may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: the vector of fitted values for the systemic component, πi.

– linear.predictors: the vector of xiβ

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.
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– data: the name of the input data frame.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values
specified in x and x1.

– qi$rr: the simulated risk ratio for the expected probabilities simulated from x

and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

When users estimate probit.survey models with replicate weights in Zelig, an object
called .survey.prob.weights is created in the global environment. Zelig will over-write
any existing object with that name, and users are therefore advised to re-name any object
called .survey.prob.weights before using probit.survey models in Zelig.

How to Cite

To cite the probit.survey Zelig model:

Nicholas Carnes. 2008. ”probit.survey: Survey-Weighted Probit Regression for
Dichotomous Dependent Variables” in Kosuke Imai, Gary King, and Olivia
Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/
zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

511

http://gking.harvard.edu/zelig
http://gking.harvard.edu/zelig
http://GKing.harvard.edu/zelig


See also

Survey-weighted linear models and the sample data used in the examples above are a part
of the survey package by Thomas Lumley. Users may wish to refer to the help files for
the three functions that Zelig draws upon when estimating survey-weighted models, namely,
help(svyglm), help(svydesign), and help(svrepdesign). The Gamma model is part of
the stats package by Venables and Ripley (2002). Advanced users may wish to refer to
help(glm) and help(family), as well as McCullagh and Nelder (1989).

afterpkgs, echo=FALSE = after<-search() torm<-setdiff(after,before) for (pkg in torm)
detach(pos=match(pkg,search())) @
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12.62 relogit: Rare Events Logistic Regression for Di-

chotomous Dependent Variables

The relogit procedure estimates the same model as standard logistic regression (appropriate
when you have a dichotomous dependent variable and a set of explanatory variables; see
Section 12.22), but the estimates are corrected for the bias that occurs when the sample
is small or the observed events are rare (i.e., if the dependent variable has many more 1s
than 0s or the reverse). The relogit procedure also optionally uses prior correction for
case-control sampling designs.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "relogit", tau = NULL,

case.correct = c("prior", "weighting"),

bias.correct = TRUE, robust = FALSE,

data = mydata, ...)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Arguments

The relogit procedure supports four optional arguments in addition to the standard argu-
ments for zelig(). You may additionally use:

� tau: a vector containing either one or two values for τ , the true population fraction of
ones. Use, for example, tau = c(0.05, 0.1) to specify that the lower bound on tau

is 0.05 and the upper bound is 0.1. If left unspecified, only finite-sample bias correction
is performed, not case-control correction.

� case.correct: if tau is specified, choose a method to correct for case-control sampling
design: "prior" (default) or "weighting".

� bias.correct: a logical value of TRUE (default) or FALSE indicating whether the in-
tercept should be corrected for finite sample (rare events) bias.

� robust: defaults to FALSE (except when case.control = "weighting"; the default
in this case becomes robust = TRUE). If TRUE is selected, zelig() computes robust
standard errors via the sandwich package (see Zeileis (2004)). The default type of
robust standard error is heteroskedastic and autocorrelation consistent (HAC), and
assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

* "vcovHAC": (default if robust = TRUE) HAC standard errors.
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* "kernHAC": HAC standard errors using the weights given in Andrews (1991).

* "weave": HAC standard errors using the weights given in Lumley and Hea-
gerty (1999).

– order.by: defaults to NULL (the observations are chronologically ordered as in the
original data). Optionally, you may specify a vector of weights (either as order.by
= z, where z exists outside the data frame; or as order.by = ~z, where z is a
variable in the data frame) The observations are chronologically ordered by the
size of z.

– ...: additional options passed to the functions specified in method. See the
sandwich library and Zeileis (2004) for more options.

Note that if tau = NULL, bias.correct = FALSE, robust = FALSE, the relogit proce-
dure performs a standard logistic regression without any correction.

Example 1: One Tau with Prior Correction and Bias Correction

Due to memory and space considerations, the data used here are a sample drawn from the
full data set used in King and Zeng, 2001, The proportion of militarized interstate conflicts
to the absence of disputes is τ = 1, 042/303, 772 ≈ 0.00343. To estimate the model,

> data(mid)

> z.out1 <- zelig(conflict ~ major + contig + power + maxdem +

+ mindem + years, data = mid, model = "relogit", tau = 1042/303772)

Summarize the model output:

> summary(z.out1)

Set the explanatory variables to their means:

> x.out1 <- setx(z.out1)

Simulate quantities of interest:

> s.out1 <- sim(z.out1, x = x.out1)

> summary(s.out1)

> plot(s.out1)
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Example 2: One Tau with Weighting, Robust Standard Errors, and Bias Cor-
rection

Suppose that we wish to perform case control correction using weighting (rather than the
default prior correction). To estimate the model:

> z.out2 <- zelig(conflict ~ major + contig + power + maxdem +

+ mindem + years, data = mid, model = "relogit", tau = 1042/303772,

+ case.control = "weighting", robust = TRUE)

Summarize the model output:

> summary(z.out2)

Set the explanatory variables to their means:

> x.out2 <- setx(z.out2)
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Simulate quantities of interest:

> s.out2 <- sim(z.out2, x = x.out2)

> summary(s.out2)

Example 3: Two Taus with Bias Correction and Prior Correction

Suppose that we did not know that τ ≈ 0.00343, but only that it was somewhere between
(0.002, 0.005). To estimate a model with a range of feasible estimates for τ (using the default
prior correction method for case control correction):

> z.out2 <- zelig(conflict ~ major + contig + power + maxdem +

+ mindem + years, data = mid, model = "relogit", tau = c(0.002,

+ 0.005))

Summarize the model output:

> summary(z.out2)

Set the explanatory variables to their means:

> x.out2 <- setx(z.out2)

Simulate quantities of interest:

> s.out <- sim(z.out2, x = x.out2)

> summary(s.out2)

> plot(s.out2)
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The cost of giving a range of values for τ is that point estimates are not available for quantities
of interest. Instead, quantities are presented as confidence intervals with significance less than
or equal to a specified level (e.g., at least 95% of the simulations are contained in the nominal
95% confidence interval).

Model

� Like the standard logistic regression, the stochastic component for the rare events
logistic regression is:

Yi ∼ Bernoulli(πi),

where Yi is the binary dependent variable, and takes a value of either 0 or 1.

� The systematic component is:

πi =
1

1 + exp(−xiβ)
.
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� If the sample is generated via a case-control (or choice-based) design, such as when
drawing all events (or “cases”) and a sample from the non-events (or “controls”) and
going backwards to collect the explanatory variables, you must correct for selecting
on the dependent variable. While the slope coefficients are approximately unbiased,
the constant term may be significantly biased. Zelig has two methods for case control
correction:

1. The “prior correction” method adjusts the intercept term. Let τ be the true
population fraction of events, ȳ the fraction of events in the sample, and β̂0 the
uncorrected intercept term. The corrected intercept β0 is:

β = β̂0 − ln

[(
1− τ

τ

)(
ȳ

1− ȳ

)]
.

2. The “weighting” method performs a weighted logistic regression to correct for a
case-control sampling design. Let the 1 subscript denote observations for which
the dependent variable is observed as a 1, and the 0 subscript denote observations
for which the dependent variable is observed as a 0. Then the vector of weights
wi

w1 =
τ

ȳ

w0 =
(1− τ)

(1− ȳ)

wi = w1Yi + w0(1− Yi)

If τ is unknown, you may alternatively specify an upper and lower bound for the
possible range of τ . In this case, the relogit procedure uses“robust Bayesian”methods
to generate a confidence interval (rather than a point estimate) for each quantity of
interest. The nominal coverage of the confidence interval is at least as great as the
actual coverage.

� By default, estimates of the the coefficients β are bias-corrected to account for finite
sample or rare events bias. In addition, quantities of interest, such as predicted proba-
bilities, are also corrected of rare-events bias. If β̂ are the uncorrected logit coefficients
and bias(β̂) is the bias term, the corrected coefficients β̃ are

β̂ − bias(β̂) = β̃

The bias term is
bias(β̂) = (X ′WX)−1X ′Wξ

where

ξi = 0.5Qii

(
(1 + w − 1)π̂i − w1

)
Q = X(X ′WX)−1X ′

W = diag{π̂i(1− π̂i)wi}
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where wi and w1 are given in the “weighting” section above.

Quantities of Interest

� For either one or no τ :

– The expected values (qi$ev) for the rare events logit are simulations of the pre-
dicted probability

E(Y ) = πi =
1

1 + exp(−xiβ)
,

given draws of β from its posterior.

– The predicted value (qi$pr) is a draw from a binomial distribution with mean
equal to the simulated πi.

– The first difference (qi$fd) is defined as

FD = Pr(Y = 1 | x1, τ)− Pr(Y = 1 | x, τ).

– The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1, τ) / Pr(Y = 1 | x, τ).

� For a range of τ defined by [τ1, τ2], each of the quantities of interest are n× 2 matrices,
which report the lower and upper bounds, respectively, for a confidence interval with
nominal coverage at least as great as the actual coverage. At worst, these bounds are
conservative estimates for the likely range for each quantity of interest. Please refer
to King and Zeng (2002) for the specific method of calculating bounded quantities of
interest.

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yi(ti = 0)], the counterfactual expected value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,
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where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. Variation in the simulations are due to uncertainty in simulating

̂Yi(ti = 0), the counterfactual predicted value of Yi for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "relogit", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– bias.correct: TRUE if bias correction was selected, else FALSE.

– prior.correct: TRUE if prior correction was selected, else FALSE.

– weighting: TRUE if weighting was selected, else FALSE.

– tau: the value of tau for which case control correction was implemented.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: the vector of fitted values for the systemic component, πi.

– linear.predictors: the vector of xiβ

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

Note that for a range of τ , each of the above items may be extracted from the
"lower.estimate" and "upper.estimate" objects in your zelig output. Use lower

<- z.out$lower.estimate, and then lower$coefficients to extract the coefficients
for the empirical estimate generated for the smaller of the two τ .

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.
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– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values, or predicted probabilities, for the specified
values of x.

– qi$pr: the simulated predicted values drawn from Binomial distributions given
the predicted probabilities.

– qi$fd: the simulated first difference in the predicted probabilities for the values
specified in x and x1.

– qi$rr: the simulated risk ratio for the predicted probabilities simulated from x

and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

Differences with Stata Version

The Stata version of ReLogit and the R implementation differ slightly in their coefficient
estimates due to differences in the matrix inversion routines implemented in R and Stata.
Zelig uses orthogonal-triangular decomposition (through lm.influence()) to compute the
bias term, which is more numerically stable than standard matrix calculations.

How to Cite

To cite the relogit Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”relogit: Rare Events Logis-
tic Regression for Dichotomous Dependent Variables” in Kosuke Imai, Gary
King, and Olivia Lau, ”Zelig: Everyone’s Statistical Software,”http://gking.
harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.
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See also

For more information see King and Zeng (2001a),King and Zeng (2001b),King and Zeng
(2002a). Sample data are from King and Zeng (2001a).
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12.63 sur: Seemingly Unrelated Regression

sur extends ordinary least squares analysis to estimate system of linear equations with
correlated error terms. The seemingly unrelated regression model can be viewed as a special
case of generalized least squares.

Syntax

> fml <- list ("mu1" = Y1 ~ X1,

"mu2" = Y2 ~ X2,

"mu3" = Y3 ~ X3)

> z.out<-zelig(formula = fml, model = "2sls", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Inputs

sur regression specification has at least M equations (M ≥ 2) corresponding to the depen-
dent variables (Y1, Y2, . . . , YM).

� formula:a list whose elements are formulae corresponding to the M equations and
their respective dependent and explanatory variables. For example, when there are no
constraints on the coefficients:

> fml <- list(mu1 = Y1 ~ X1, mu2 = Y2 ~ X2, mu3 = Y3 ~ X3)

"mu1" is the label for the first equation with Y1 as the dependent variable and X1 as
the explanatory variable. Similarly "mu2" and "mu3" are the labels for the Y2 and Y3
equations.

� tag: Users can also put constraints on the coefficients by using the special function tag.
tag takes two parameters. The first parameter is the variable whose coefficient needs
to be constrained and the second parameter is label for the constrained coefficient.
Each label uniquely identifies the constrained coefficient. For example:

> fml <- list(mu1 = Y1 ~ tag(Xc, "constrain1") + X1, mu2 = Y2 ~

+ tag(Xc, "constrain1") + X2, mu3 = Y3 ~ X3)

Additional Inputs

sur takes the following additional inputs for model specifications:

� TX: an optional matrix to transform the regressor matrix and, hence, also the coefficient
vector (see details). Default is NULL.

� maxiter: maximum number of iterations.
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� tol: tolerance level indicating when to stop the iteration.

� rcovformula: formula to calculate the estimated residual covariance matrix (see de-
tails). Default is equal to 1.

� probdfsys: use the degrees of freedom of the whole system (in place of the degrees of
freedom of the single equation to calculate probability values for the t-test of individual
parameters.

� solvetol: tolerance level for detecting linear dependencies when inverting a matrix or
calculating a determinant. Default is solvetol=

.Machine\$double.eps.

� saveMemory: logical. Save memory by omitting some calculation that are not crucial
for the basic estimate (e.g McElroy’s R2).

Details

The matrix TX transforms the regressor matrix (X) by X∗ = X × TX. Thus, the vector
of coefficients is now b = TX × b∗ where b is the original(stacked) vector of all coefficients
and b∗ is the new coefficient vector that is estimated instead. Thus, the elements of vector b
and bi =

∑
j TXij × bj∗. The TX matrix can be used to change the order of the coefficients

and also to restrict coefficients (if TX has less columns than it has rows). If iterated (with
maxit>1), the covergence criterion is√∑

i(bi,g − bi,g−1)2∑
i b

2
i,g−1

< tol

where bi,g is the ith coefficient of the gth iteration step. The formula (rcovformula to

calculate the estimated covariance matrix of the residuals(Σ̂)can be one of the following (see
Judge et al., 1955, p.469): if rcovformula= 0:

σ̂ij =
êi′êj

T

if rcovformula= 1 or rcovformula=’geomean’:

σ̂ij =
êi′êj√

(T − ki)× (T − kj)

if rcovformula= 2 or rcovformula=’Theil’:

σ̂ij =
êi′êj

T − ki − kj + tr[Xi(Xi′Xi)−1Xi′Xj(Xj′Xj)−1Xj′]

524



if rcovformula= 3 or rcovformula=’max’:

σ̂ij =
êi′êj

T −max(ki, kj)

If i = j, formula 1, 2, and 3 are equal. All these three formulas yield unbiased estimators
for the diagonal elements of the residual covariance matrix. If ineqj, only formula 2 yields
an unbiased estimator for the residual covariance matrix, but it is not necessarily positive
semidefinit. Thus, it is doubtful whether formula 2 is really superior to formula 1 (Theil,
1971, p.322).

Examples

Attaching the example dataset:

> data(grunfeld)

Formula:

> formula <- list(mu1 = Ige ~ Fge + Cge, mu2 = Iw ~ Fw + Cw)

Estimating the model using sur:

> z.out <- zelig(formula = formula, model = "sur", data = grunfeld)

> summary(z.out)

Set explanatory variables to their default (mean/mode) values

> x.out <- setx(z.out)

Simulate draws from the posterior distribution:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)
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Model

The basic seemingly unrelated regression model assumes that for each individual observation
i there are M dependent variables (Yij, j = 1, . . . ,M) each with its own regression equation:

Yij = X ′
ijβj + εij, for i = 1, . . . , N and j = 1, . . . ,M

when Xij is a k-vector of explanatory variables, βj is the coefficients of the explanatory
variables,

� The stochastic component is:

εij ∼ N (0, σij)

where within each j equation, epsilonij is identically and independently distributed for
i = 1, . . . ,M ,

Var(εij) = σj and Cov(εij, εi′j) = 0, for i 6= i′, and j = 1, . . . ,M

However, the error terms for the ith observation can be correlated across equations

Cov(εij, εij′) 6= 0, for j¬j′, and i = 1, . . . , N

� The systematic component is:

µij = E(Yij) = Xijβj, for i = 1, . . . , N, and j = 1, . . . ,M

See Also

For information about two stage least squares regression, see Section ?? and help(2sls).
For information about three stage least squares regression, see Section ?? and help(3sls).

Quantities of Interest

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(formula=fml, model = "sur", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below:

� rcovest: residual covariance matrix used for estimation.
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� mcelr2: McElroys R-squared value for the system.

� method: Estimation method.

� g: number of equations.

� n: total number of observations.

� k: total number of coefficients.

� ki: total number of linear independent coefficients.

� df: degrees of freedom of the whole system.

� iter: number of iteration steps.

� b: vector of all estimated coefficients.

� t: t values for b.

� se: estimated standard errors of b.

� bt: coefficient vector transformed by TX.

� p: p values for b.

� bcov: estimated covariance matrix of b.

� btcov: covariance matrix of bt.

� rcov: estimated residual covariance matrix.

� drcov: determinant of rcov.

� rcor: estimated residual correlation matrix.

� olsr2: system OLS R-squared value.

� y: vector of all (stacked) endogenous variables.

� x: matrix of all (diagonally stacked) regressors.

� data: data frame of the whole system (including instruments).

� TX: matrix used to transform the regressor matrix.

� rcovformula: formula to calculate the estimated residual covariance matrix.

� probdfsys: system degrees of freedom to calculate probability values?.

� solvetol: tolerance level when inverting a matrix or calculating a determinant.
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� eq: a list that contains the results that belong to the individual equations.

� eqnlabel*: the equation label of the ith equation (from the labels list).

� formula*: model formula of the ith equation.

� n*: number of observations of the ith equation.

� k*: number of coefficients/regressors in the ith equation (including the constant).

� ki*: number of linear independent coefficients in the ith equation (including the con-
stant differs from k only if there are restrictions that are not cross equation).

� df*: degrees of freedom of the ith equation.

� b*: estimated coefficients of the ith equation.

� se*: estimated standard errors of b of the ith equation.

� t*: t values for b of the ith equation.

� p*: p values for b of the ith equation.

� covb*: estimated covariance matrix of b of the ith equation.

� y*: vector of endogenous variable (response values) of the ith equation.

� x*: matrix of regressors (model matrix) of the ith equation.

� data*: data frame (including instruments) of the ith equation.

� fitted*: vector of fitted values of the ith equation.

� residuals*: vector of residuals of the ith equaiton.

� ssr*: sum of squared residuals of the ith equation.

� mse*: estimated variance of the residuals (mean of squared errors) of the ith equation.

� s2*: estimated variance of the residents( ˆsigma
2
) of the ith equation.

� rmse*: estimated standard error of the reiduals (square root of mse) of the ith equation.

� s*: estimated standard error of the residuals (σ̂) of the ith equation.

� r2*: R-squared (coefficient of determination).

� adjr2*: adjusted R-squared value.

� maxiter: maximum number of iterations.

� tol: tolerance level indicating when to stop the iteration.
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How to Cite

To cite the sur Zelig model:

Ferdinand Alimadhi, Ying Lu, and Elena Villalon. 2007. ”sur: Seemingly Unre-
lated Regression” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Every-
one’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The sur function is adapted from the systemfit library (Hamann and Henningsen 2005).
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12.64 threesls: Three Stage Least Squares

threesls is a combination of two stage least squares and seemingly unrelated regression. It
provides consistent estimates for linear regression models with explanatory variables corre-
lated with the error term. It also extends ordinary least squares analysis to estimate system
of linear equations with correlated error terms

Syntax

> fml <- list(mu1 = Y1 ~ X1 + Z1, mu2 = Y2 ~ X2 + Z2, inst1 = Z1 ~

+ W1 + X1, inst2 = Z2 ~ W2 + X2)

> z.out <- zelig(formula = fml, model = "treesls", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Inputs

threesls regression specification requires at least two sets of equations. The first set of
M euqations corresponds to the M dependent variables (Y1, . . . , YM) to be estimated. The
second set of equations (Z) corresponds to the instrumental variables in the M equations.

� formula:a list of the system of equations and instrumental variable equations. The
system of equations is listed first as mus. The equations for the instrumental variables
are listed next as insts. For example:

> fml <- list(mu1 = Y1 ~ X1 + Z1, mu2 = Y2 ~ X2 + Z2, inst1 = Z1 ~

+ W1 + X1, inst2 = Z2 ~ W2 + X2)

"mu1" is the first equation in the two equation model with Y1 as the dependent variable
and X1 and Z1 as the explanatory variables. "mu2" is the second equation with Y2 as
the dependent variable and X2 and Z2 as the explanatory variables. Z1 and Z2 are also
problematic endogenous variables, so they are estimated through instruments in the
"inst1" and "inst2" equations.

� Y: dependent variables of interest in the system of equations.

� Z: the problematic explanatory variables correlated with the error term.

� W: exogenous instrument variables used to estimate the problematic explanatory vari-
ables (Z)
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Additional Inputs

threesls takes the following additional inputs for model specifications:

� TX: an optional matrix to transform the regressor matrix and, hence, also the coefficient
vector (see details). Default is NULL.

� maxiter: maximum number of iterations.

� tol: tolerance level indicating when to stop the iteration.

� rcovformula: formula to calculate the estimated residual covariance matrix (see de-
tails). Default is equal to 1.

� formulathreesls: formula for calculating the threesls estimator, one of “GLS”, “IV”,
“GMM”, “Schmidt”, or “Eviews” (see details.)

� probdfsys: use the degrees of freedom of the whole system (in place of the degrees of
freedom of the single equation to calculate probability values for the t-test of individual
parameters.

� single.eq.sigma: use different σ2 for each single equation to calculate the covariance
matrix and the standard errors of the coefficients.

� solvetol: tolerance level for detecting linear dependencies when inverting a matrix or
calculating a determinant. Default is solvetol=.Machine$double.eps.

� saveMemory: logical. Save memory by omitting some calculation that are not crucial
for the basic estimate (e.g McElroy’s R2).

Details

The matrix TX transforms the regressor matrix (X) by X∗ = X × TX. Thus, the vector
of coefficients is now b = TX × b∗ where b is the original(stacked) vector of all coefficients
and b∗ is the new coefficient vector that is estimated instead. Thus, the elements of vector b
and bi =

∑
j TXij × bj∗. The TX matrix can be used to change the order of the coefficients

and also to restrict coefficients (if TX has less columns than it has rows). If iterated (with
maxit>1), the covergence criterion is√∑

i(bi,g − bi,g−1)2∑
i b

2
i,g−1

< tol

where bi,g is the ith coefficient of the gth iteration step. The formula (rcovformula to

calculate the estimated covariance matrix of the residuals(Σ̂)can be one of the following (see
Judge et al., 1955, p.469): if rcovformula= 0:

σ̂ij =
êi′êj

T
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if rcovformula= 1 or rcovformula=’geomean’:

σ̂ij =
êi′êj√

(T − ki)× (T − kj)

if rcovformula= 2 or rcovformula=’Theil’:

σ̂ij =
êi′êj

T − ki − kj + tr[Xi(Xi′Xi)−1Xi′Xj(Xj′Xj)−1Xj′]

if rcovformula= 3 or rcovformula=’max’:

σ̂ij =
êi′êj

T −max(ki, kj)

If i = j, formula 1, 2, and 3 are equal. All these three formulas yield unbiased estimators
for the diagonal elements of the residual covariance matrix. If ineqj, only formula 2 yields
an unbiased estimator for the residual covariance matrix, but it is not necessarily positive
semidefinit. Thus, it is doubtful whether formula 2 is really superior to formula 1 (Theil,
1971, p.322). The formulas to calculate the threesls estimator lead to identical results if
the same instruments are used in all equations. If different instruments are used in the
different equations, only the GMM-threesls estimator (“GMM”) and the threesls estimator
proposed by Schmidt (1990) (“Schmidt”) are consistent, whereas “GMM” is efficient relative
to “Schmidt” (see Schmidt, 1990).

Examples

Attaching the example dataset:

> data(kmenta)

Formula:

> formula <- list(mu1 = q ~ p + d, mu2 = q ~ p + f + a, inst = ~d +

+ f + a)

Estimating the model using threesls:

> z.out <- zelig(formula = formula, model = "threesls", data = kmenta)

> summary(z.out)

Set explanatory variables to their default (mean/mode) values

> x.out <- setx(z.out)

Simulate draws from the posterior distribution:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)
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Plot the quantities of interest
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Model

See Also

For information about two stage least square regression, see Section ?? and help(2sls).
For information about seemingly unrelated regression, see Section 12.63 and help(sur).

Quantities of Interest

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(formula=fml, model = "threesls", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below:

� rcovest: residual covariance matrix used for estimation.

� mcelr2: McElroys R-squared value for the system.

� h: matrix of all (diagonally stacked) instrumental variables.

� formulathreesls: formula for calculating the threesls estimator

� method: Estimation method.

� g: number of equations.

� n: total number of observations.

� k: total number of coefficients.

� ki: total number of linear independent coefficients.

� df: degrees of freedom of the whole system.

� iter: number of iteration steps.

� b: vector of all estimated coefficients.

� t: t values for b.

� se: estimated standard errors of b.

� bt: coefficient vector transformed by TX.
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� p: p values for b.

� bcov: estimated covariance matrix of b.

� btcov: covariance matrix of bt.

� rcov: estimated residual covariance matrix.

� drcov: determinant of rcov.

� rcor: estimated residual correlation matrix.

� olsr2: system OLS R-squared value.

� y: vector of all (stacked) endogenous variables.

� x: matrix of all (diagonally stacked) regressors.

� data: data frame of the whole system (including instruments).

� TX: matrix used to transform the regressor matrix.

� rcovformula: formula to calculate the estimated residual covariance matrix.

� probdfsys: system degrees of freedom to calculate probability values?.

� solvetol: tolerance level when inverting a matrix or calculating a determinant.

� eq: a list that contains the results that belong to the individual equations.

� eqnlabel*: the equation label of the ith equation (from the labels list).

� formula*: model formula of the ith equation.

� n*: number of observations of the ith equation.

� k*: number of coefficients/regressors in the ith equation (including the constant).

� ki*: number of linear independent coefficients in the ith equation (including the con-
stant differs from k only if there are restrictions that are not cross equation).

� df*: degrees of freedom of the ith equation.

� b*: estimated coefficients of the ith equation.

� se*: estimated standard errors of b of the ith equation.

� t*: t values for b of the ith equation.

� p*: p values for b of the ith equation.
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� covb*: estimated covariance matrix of b of the ith equation.

� y*: vector of endogenous variable (response values) of the ith equation.

� x*: matrix of regressors (model matrix) of the ith equation.

� data*: data frame (including instruments) of the ith equation.

� fitted*: vector of fitted values of the ith equation.

� residuals*: vector of residuals of the ith equaiton.

� ssr*: sum of squared residuals of the ith equation.

� mse*: estimated variance of the residuals (mean of squared errors) of the ith equation.

� s2*: estimated variance of the residents( ˆsigma
2
) of the ith equation.

� rmse*: estimated standard error of the reiduals (square root of mse) of the ith equation.

� s*: estimated standard error of the residuals (σ̂) of the ith equation.

� r2*: R-squared (coefficient of determination).

� adjr2*: adjusted R-squared value.

� inst*: instruments of the ith equation.

� h*: matrix of instrumental variables of the ith equation.

� zelig.data: the input data frame if save.data = TRUE.

How to Cite

To cite the threesls Zelig model:

Ferdinand Alimadhi, Ying Lu, and Elena Villalon. 2007. ”threesls: Three Stage
Least Squares” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The threesls function is adapted from the systemfit library (Hamann and Henningsen 2005).
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12.65 tobit: Linear Regression for a Left-Censored

Dependent Variable

Tobit regression estimates a linear regression model for a left-censored dependent variable,
where the dependent variable is censored from below. While the classical tobit model has
values censored at 0, you may select another censoring point. For other linear regression
models with fully observed dependent variables, see Bayesian regression (Section 12.40),
maximum likelihood normal regression (Section 12.39), or least squares (Section 12.32).

Syntax

> z.out <- zelig(Y ~ X1 + X2, below = 0, above = Inf,

model = "tobit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Inputs

zelig() accepts the following arguments to specify how the dependent variable is censored.

� below: (defaults to 0) The point at which the dependent variable is censored from
below. If any values in the dependent variable are observed to be less than the censoring
point, it is assumed that that particular observation is censored from below at the
observed value. (See Section 12.66 for a Bayesian implementation that supports both
left and right censoring.)

� robust: defaults to FALSE. If TRUE, zelig() computes robust standard errors based
on sandwich estimators (see Huber (1981) and White (1980)) and the options selected
in cluster.

� cluster: if robust = TRUE, you may select a variable to define groups of correlated
observations. Let x3 be a variable that consists of either discrete numeric values,
character strings, or factors that define strata. Then

> z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3",

model = "tobit", data = mydata)

means that the observations can be correlated within the strata defined by the variable
x3, and that robust standard errors should be calculated according to those clusters. If
robust = TRUE but cluster is not specified, zelig() assumes that each observation
falls into its own cluster.

Zelig users may wish to refer to help(survreg) for more information.
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Examples

1. Basic Example
Attaching the sample dataset:

> data(tobin)

Estimating linear regression using tobit:

> z.out <- zelig(durable ~ age + quant, model = "tobit", data = tobin)

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given x.out.

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

2. Simulating First Differences
Set explanatory variables to their default(mean/mode) values, with high (80th per-
centile) and low (20th percentile) liquidity ratio (quant):

> x.high <- setx(z.out, quant = quantile(tobin$quant, prob = 0.8))

> x.low <- setx(z.out, quant = quantile(tobin$quant, prob = 0.2))

Estimating the first difference for the effect of high versus low liquidity ratio on dura-
tion(durable):

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

Model

� Let Y ∗
i be a latent dependent variable which is distributed with stochastic component

Y ∗
i ∼ Normal(µi, σ

2)

where µi is a vector means and σ2 is a scalar variance parameter. Y ∗
i is not directly

observed, however. Rather we observed Yi which is defined as:

Yi =

{
Y ∗

i if c < Y ∗
i

c if c ≥ Y ∗
i

where c is the lower bound below which Y ∗
i is censored.
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� The systematic component is given by

µi = xiβ,

where xi is the vector of k explanatory variables for observation i and β is the vector
of coefficients.

Quantities of Interest

� The expected values (qi$ev) for the tobit regression model are the same as the expected
value of Y ∗:

E(Y ∗|X) = µi = xiβ

� The first difference (qi$fd) for the tobit regression model is defined as

FD = E(Y ∗ | x1)− E(Y ∗ | x).

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is

1∑
ti

∑
i:ti=1

[E[Y ∗
i (ti = 1)]− E[Y ∗

i (ti = 0)]],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(y ~ x, model = "tobit.bayes", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated parame-
ters. The first k columns contain the posterior draws of the coefficients β, and
the last column contains the posterior draws of the variance σ2.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.
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� From the sim() output object s.out:

– qi$ev: the simulated expected value for the specified values of x.

– qi$fd: the simulated first difference in the expected values given the values spec-
ified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the tobit Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”tobit: Linear regression for Left-
Censored Dependent Variable” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The tobit function is part of the survival library by Terry Therneau, ported to R by Thomas
Lumley. Advanced users may wish to refer to help(survfit) in the survival library and
Venables and Ripley (2002).Sample data are from King et al. (1990).
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12.66 tobit.bayes: Bayesian Linear Regression for a

Censored Dependent Variable

Bayesian tobit regression estimates a linear regression model with a censored dependent
variable using a Gibbs sampler. The dependent variable may be censored from below and/or
from above. For other linear regression models with fully observed dependent variables, see
Bayesian regression (Section 12.40), maximum likelihood normal regression (Section 12.39),
or least squares (Section 12.32).

Syntax

> z.out <- zelig(Y ~ X1 + X2, below = 0, above = Inf,

model = "tobit.bayes", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Inputs

zelig() accepts the following arguments to specify how the dependent variable is censored.

� below: point at which the dependent variable is censored from below. If the dependent
variable is only censored from above, set below = -Inf. The default value is 0.

� above: point at which the dependent variable is censored from above. If the dependent
variable is only censored from below, set above = Inf. The default value is Inf.

Additional Inputs

Use the following arguments to monitor the convergence of the Markov chain:

� burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).

� mcmc: number of the MCMC iterations after burnin (defaults to 10,000).

� thin: thinning interval for the Markov chain. Only every thin-th draw from the
Markov chain is kept. The value of mcmc must be divisible by this value. The default
value is 1.

� verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed
to the screen.

� seed: seed for the random number generator. The default is NA which corresponds to
a random seed of 12345.

� beta.start: starting values for the Markov chain, either a scalar or vector with length
equal to the number of estimated coefficients. The default is NA, such that the least
squares estimates are used as the starting values.

541



Use the following parameters to specify the model’s priors:

� b0: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar, that
value will be the prior mean for all coefficients. The default is 0.

� B0: prior precision parameter for the coefficients, either a square matrix (with the
dimensions equal to the number of the coefficients) or a scalar. If a scalar, that value
times an identity matrix will be the prior precision parameter. The default is 0, which
leads to an improper prior.

� c0: c0/2 is the shape parameter for the Inverse Gamma prior on the variance of the
disturbance terms.

� d0: d0/2 is the scale parameter for the Inverse Gamma prior on the variance of the
disturbance terms.

Zelig users may wish to refer to help(MCMCtobit) for more information.

Convergence

Users should verify that the Markov Chain converges to its stationary distribution. After
running the zelig() function but before performing setx(), users may conduct the following
convergence diagnostics tests:

� geweke.diag(z.out$coefficients): The Geweke diagnostic tests the null hypothesis
that the Markov chain is in the stationary distribution and produces z-statistics for
each estimated parameter.

� heidel.diag(z.out$coefficients): The Heidelberger-Welch diagnostic first tests
the null hypothesis that the Markov Chain is in the stationary distribution and pro-
duces p-values for each estimated parameter. Calling heidel.diag() also produces
output that indicates whether the mean of a marginal posterior distribution can be es-
timated with sufficient precision, assuming that the Markov Chain is in the stationary
distribution.

� raftery.diag(z.out$coefficients): The Raftery diagnostic indicates how long the
Markov Chain should run before considering draws from the marginal posterior distri-
butions sufficiently representative of the stationary distribution.

If there is evidence of non-convergence, adjust the values for burnin and mcmc and rerun
zelig().

Advanced users may wish to refer to help(geweke.diag), help(heidel.diag), and
help(raftery.diag) for more information about these diagnostics.
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Examples

1. Basic Example
Attaching the sample dataset:

> data(tobin)

Estimating linear regression using tobit.bayes:

> z.out <- zelig(durable ~ age + quant, model = "tobit.bayes",

+ data = tobin, verbose = TRUE)

Checking for convergence before summarizing the estimates:

> geweke.diag(z.out$coefficients)

> heidel.diag(z.out$coefficients)

> raftery.diag(z.out$coefficients)

> summary(z.out)

Setting values for the explanatory variables to their sample averages:

> x.out <- setx(z.out)

Simulating quantities of interest from the posterior distribution given x.out.

> s.out1 <- sim(z.out, x = x.out)

> summary(s.out1)

2. Simulating First Differences
Set explanatory variables to their default(mean/mode) values, with high (80th per-
centile) and low (20th percentile) liquidity ratio (quant):

> x.high <- setx(z.out, quant = quantile(tobin$quant, prob = 0.8))

> x.low <- setx(z.out, quant = quantile(tobin$quant, prob = 0.2))

Estimating the first difference for the effect of high versus low liquidity ratio on dura-
tion(durable):

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)
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Model

Let Y ∗
i be the dependent variable which is not directly observed. Instead, we observe Yi

which is defined as following:

Yi =


Y ∗

i if c1 < Y ∗
i < c2

c1 if c1 ≥ Y ∗
i

c2 if c2 ≤ Y ∗
i

where c1 is the lower bound below which Y ∗
i is censored, and c2 is the upper bound above

which Y ∗
i is censored.

� The stochastic component is given by

εi ∼ Normal(0, σ2)

where εi = Y ∗
i − µi.

� The systematic component is given by

µi = xiβ,

where xi is the vector of k explanatory variables for observation i and β is the vector
of coefficients.

� The semi-conjugate priors for β and σ2 are given by

β ∼ Normalk
(
b0, B

−1
0

)
σ2 ∼ InverseGamma

(
c0
2
,
d0

2

)
where b0 is the vector of means for the k explanatory variables, B0 is the k×k precision
matrix (the inverse of a variance-covariance matrix), and c0/2 and d0/2 are the shape
and scale parameters for σ2. Note that β and σ2 are assumed a priori independent.

Quantities of Interest

� The expected values (qi$ev) for the tobit regression model is calculated as following.
Let

Φ1 = Φ

(
(c1 − xβ)

σ

)
Φ2 = Φ

(
(c2 − xβ)

σ

)
φ1 = φ

(
(c1 − xβ)

σ

)
φ2 = φ

(
(c2 − xβ)

σ

)
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where Φ(·) is the (cumulative) Normal density function and φ(·) is the Normal proba-
bility density function of the standard normal distribution. Then the expected values
are

E(Y |x) = P (Y ∗ ≤ c1|x)c1 + P (c1 < Y ∗ < c2|x)E(Y ∗ | c1 < Y ∗ < c2, x) + P (Y ∗ ≥ c2)c2

= Φ1c1 + xβ(Φ2 − Φ1) + σ(φ1 − φ2) + (1− Φ2)c2,

� The first difference (qi$fd) for the tobit regression model is defined as

FD = E(Y | x1)− E(Y | x).

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is

1∑
ti

∑
i:ti=1

[Yi(ti = 1)− E[Yi(ti = 0)]],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(y ~ x, model = "tobit.bayes", data)

then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: draws from the posterior distributions of the estimated parame-
ters. The first k columns contain the posterior draws of the coefficients β, and
the last column contains the posterior draws of the variance σ2.

– zelig.data: the input data frame if save.data = TRUE.

– seed: the random seed used in the model.

� From the sim() output object s.out:

– qi$ev: the simulated expected value for the specified values of x.

– qi$fd: the simulated first difference in the expected values given the values spec-
ified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.
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How to Cite

To cite the tobit.bayes Zelig model:

Ben Goodrich and Ying Lu. 2007. ”tobit.bayes: Bayesian Linear Regression for
a Censored Dependent Variable” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Bayesian tobit regression is part of the MCMCpack library by Andrew D. Martin and Kevin
M. Quinn (Martin and Quinn 2005). The convergence diagnostics are part of the CODA
library by Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines (Plummer et al.
2005).

546

http://gking.harvard.edu/zelig
http://GKing.harvard.edu/zelig


12.67 twosls: Two Stage Least Squares

twosls provides consistent estimates for linear regression models with some explanatory
variable correlated with the error term using instrumental variables. In this situation, ordi-
nary least squares fails to provide consistent estimates. The name two-stage least squares
stems from the two regressions in the estimation procedure. In stage one, an ordinary least
squares prediction of the instrumental variable is obtained from regressing it on the instru-
ment variables. In stage two, the coefficients of interest are estimated using ordinary least
square after substituting the instrumental variable by its predictions from stage one.

Syntax

> fml <- list("mu1" = Y ~ X + W, "mu2" = W ~ X + Z,

"inst" = ~ X + Z)

> z.out <- zelig(formula = fml, model = "twosls", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Inputs

twosls regression take the following inputs:

� formula: A list of the formula for the main equation, the formula for the endogenous
variable, and the (one-sided) formula for instrumental variables (including covariates).
The first object in the list mu corresponds to the main regression model needs to be
estimated. Alternatively, a system of simultaneous equations can be used. See the help
file of systemfit for more information. For example:

> fml <- list(mu1 = Y ~ X + W, mu2 = W ~ X + Z, inst = ~X +

+ Z)

– Y: the dependent variable of interest.

– X: the covariate.

– W: the endogenous variable.

– Z: the exogenous instrumental variable.

Additional Inputs

twosls takes the following additional inputs for model specifications:

� TX: an optional matrix to transform the regressor matrix and, hence, also the coefficient
vector (see 12.67). Default is NULL.

� rcovformula: formula to calculate the estimated residual covariance matrix (see 12.67).
Default is equal to 1.

547



� probdfsys: use the degrees of freedom of the whole system (in place of the degrees of
freedom of the single equation to calculate probability values for the t-test of individual
parameters.

� single.eq.sigma: use different σ2 for each single equation to calculate the covariance
matrix and the standard errors of the coefficients.

� solvetol: tolerance level for detecting linear dependencies when inverting a matrix or
calculating a determinant. Default is solvetol=.Machine$double.eps.

� saveMemory: logical. Save memory by omitting some calculation that are not crucial
for the basic estimate (e.g McElroy’s R2).

Details

� TX: The matrix TX transforms the regressor matrix (X) by X∗ = X × TX. Thus, the
vector of coefficients is now b = TX × b∗ where b is the original(stacked) vector of all
coefficients and b∗ is the new coefficient vector that is estimated instead. Thus, the
elements of vector b and bi =

∑
j TXij × bj∗. The TX matrix can be used to change

the order of the coefficients and also to restrict coefficients (if TX has less columns
than it has rows).

� rcovformula: The formula to calculate the estimated covariance matrix of the residuals(Σ̂)can
be one of the following (see Judge et al., 1955, p.469): if rcovformula= 0:

σ̂ij =
êi′êj

T

if rcovformula= 1 or rcovformula=’geomean’:

σ̂ij =
êi′êj√

(T − ki)× (T − kj)

if rcovformula= 2 or rcovformula=’Theil’:

σ̂ij =
êi′êj

T − ki − kj + tr[Xi(Xi′Xi)−1Xi′Xj(Xj′Xj)−1Xj′]

if rcovformula= 3 or rcovformula=’max’:

σ̂ij =
êi′êj

T −max(ki, kj)

If i = j, formula 1, 2, and 3 are equal. All these three formulas yield unbiased
estimators for the diagonal elements of the residual covariance matrix. If ineqj, only
formula 2 yields an unbiased estimator for the residual covariance matrix, but it is
not necessarily positive semidefinit. Thus, it is doubtful whether formula 2 is really
superior to formula 1
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Examples

Attaching the example dataset:

> data(klein)

Formula:

> formula <- list(mu1 = C ~ Wtot + P + P1, mu2 = I ~ P + P1 +

+ K1, mu3 = Wp ~ X + X1 + Tm, inst = ~P1 + K1 + X1 + Tm +

+ Wg + G)

Estimating the model using twosls:

> z.out <- zelig(formula = formula, model = "twosls", data = klein)

> summary(z.out)

Set explanatory variables to their default (mean/mode) values

> x.out <- setx(z.out)

Simulate draws from the posterior distribution:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

Plot the quantities of interest
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Model

Let’s consider the following regression model,

Yi = Xiβ + Ziγ + εi, i = 1, . . . , N

where Yi is the dependent variable, Xi = (X1i, . . . , XNi) is the vector of explanatory variables,
β is the vector of coefficients of the explanatory variables Xi, Zi is the problematic explana-
tory variable, and γ is the coefficient of Zi. In the equation, there is a direct dependence of
Zi on the structural disturbances of ε.

� The stochastic component is given by

εi ∼ N (0, σ2), and cov(Zi, εi) 6= 0,

� The systematic component is given by:

µi = E(Yi) = Xiβ + Ziγ,

To correct the problem caused by the correlation of Zi and ε, two stage least squares utilizes
two steps:

� Stage 1 : A new instrumental variable Ẑ is created for Zi which is the ordinary least
squares predictions from regressing Zi on a set of exogenous instruments W and X.

Ẑi = W̃i[(W̃
>W̃ )−1W̃>Z]

where W̃ = (W,X)

� Stage 2 : Substitute for Ẑi for Zi in the original equation, estimate β and γ by ordinary
least squares regression of Y on X and Ẑ as in the following equation.

Yi = Xiβ + Ẑiγ + εi, for i = 1, . . . , N

See Also

For information about three stage least square regression, see Section ?? and help(3sls).
For information about seemingly unrelated regression, see Section 12.63 and help(sur).

Quantities of Interest

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run:

z.out <- zelig(formula=fml, model = "twosls", data)
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then you may examine the available information in z.out by using names(z.out), see the
draws from the posterior distribution of the coefficients by using z.out$coefficients,
and view a default summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below:

� h: matrix of all (diagonally stacked) instrumental variables.

� single.eq.sigma: different σ2s for each single equation?.

� zelig.data: the input data frame if save.data = TRUE.

� method: Estimation method.

� g: number of equations.

� n: total number of observations.

� k: total number of coefficients.

� ki: total number of linear independent coefficients.

� df: degrees of freedom of the whole system.

� iter: number of iteration steps.

� b: vector of all estimated coefficients.

� t: t values for b.

� se: estimated standard errors of b.

� bt: coefficient vector transformed by TX.

� p: p values for b.

� bcov: estimated covariance matrix of b.

� btcov: covariance matrix of bt.

� rcov: estimated residual covariance matrix.

� drcov: determinant of rcov.

� rcor: estimated residual correlation matrix.

� olsr2: system OLS R-squared value.

� y: vector of all (stacked) endogenous variables.

� x: matrix of all (diagonally stacked) regressors.
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� data: data frame of the whole system (including instruments).

� TX: matrix used to transform the regressor matrix.

� rcovformula: formula to calculate the estimated residual covariance matrix.

� probdfsys: system degrees of freedom to calculate probability values?.

� solvetol: tolerance level when inverting a matrix or calculating a determinant.

� eq: a list that contains the results that belong to the individual equations.

� eqnlabel*: the equation label of the ith equation (from the labels list).

� formula*: model formula of the ith equation.

� n*: number of observations of the ith equation.

� k*: number of coefficients/regressors in the ith equation (including the constant).

� ki*: number of linear independent coefficients in the ith equation (including the con-
stant differs from k only if there are restrictions that are not cross equation).

� df*: degrees of freedom of the ith equation.

� b*: estimated coefficients of the ith equation.

� se*: estimated standard errors of b of the ith equation.

� t*: t values for b of the ith equation.

� p*: p values for b of the ith equation.

� covb*: estimated covariance matrix of b of the ith equation.

� y*: vector of endogenous variable (response values) of the ith equation.

� x*: matrix of regressors (model matrix) of the ith equation.

� data*: data frame (including instruments) of the ith equation.

� fitted*: vector of fitted values of the ith equation.

� residuals*: vector of residuals of the ith equaiton.

� ssr*: sum of squared residuals of the ith equation.

� mse*: estimated variance of the residuals (mean of squared errors) of the ith equation.

� s2*: estimated variance of the residents( ˆsigma
2
) of the ith equation.
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� rmse*: estimated standard error of the reiduals (square root of mse) of the ith equation.

� s*: estimated standard error of the residuals (σ̂) of the ith equation.

� r2*: R-squared (coefficient of determination).

� adjr2*: adjusted R-squared value.

� inst*: instruments of the ith equation.

� h*: matrix of instrumental variables of the ith equation.

How to Cite

To cite the twosls Zelig model:

Ferdinand Alimadhi, Ying Lu, and Elena Villalon. 2007. ”twosls: Two Stage
Least Squares” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The twosls function is adapted from the systemfit library (Hamann and Henningsen 2005).
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12.68 weibull: Weibull Regression for Duration De-

pendent Variables

Choose the Weibull regression model if the values in your dependent variable are duration
observations. The Weibull model relaxes the exponential model’s (see Section 12.11) assump-
tion of constant hazard, and allows the hazard rate to increase or decrease monotonically
with respect to elapsed time.

Syntax

> z.out <- zelig(Surv(Y, C) ~ X1 + X2, model = "weibull", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Weibull models require that the dependent variable be in the form Surv(Y, C), where Y and
C are vectors of length n. For each observation i in 1, . . . , n, the value yi is the duration
(lifetime, for example), and the associated ci is a binary variable such that ci = 1 if the
duration is not censored (e.g., the subject dies during the study) or ci = 0 if the duration is
censored (e.g., the subject is still alive at the end of the study). If ci is omitted, all Y are
assumed to be completed; that is, time defaults to 1 for all observations.

Input Values

In addition to the standard inputs, zelig() takes the following additional options for weibull
regression:

� robust: defaults to FALSE. If TRUE, zelig() computes robust standard errors based
on sandwich estimators (see Huber (1981) and White (1980)) based on the options in
cluster.

� cluster: if robust = TRUE, you may select a variable to define groups of correlated
observations. Let x3 be a variable that consists of either discrete numeric values,
character strings, or factors that define strata. Then

> z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3",

model = "exp", data = mydata)

means that the observations can be correlated within the strata defined by the variable
x3, and that robust standard errors should be calculated according to those clusters. If
robust = TRUE but cluster is not specified, zelig() assumes that each observation
falls into its own cluster.
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Example

Attach the sample data:

> data(coalition)

Estimate the model:

> z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2, model = "weibull",

+ data = coalition)

View the regression output:

> summary(z.out)

Set the baseline values (with the ruling coalition in the minority) and the alternative values
(with the ruling coalition in the majority) for X:

> x.low <- setx(z.out, numst2 = 0)

> x.high <- setx(z.out, numst2 = 1)

Simulate expected values (qi$ev) and first differences (qi$fd):

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

> plot(s.out)
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Model

Let Y ∗
i be the survival time for observation i. This variable might be censored for some

observations at a fixed time yc such that the fully observed dependent variable, Yi, is defined
as

Yi =

{
Y ∗

i if Y ∗
i ≤ yc

yc if Y ∗
i > yc

� The stochastic component is described by the distribution of the partially observed
variable Y ∗. We assume Y ∗

i follows the Weibull distribution whose density function is
given by

f(y∗i | λi, α) =
α

λα
i

y∗α−1
i exp

{
−
(
y∗i
λi

)α}
for y∗i ≥ 0, the scale parameter λi > 0, and the shape parameter α > 0. The mean
of this distribution is λiΓ(1 + 1/α). When α = 1, the distribution reduces to the
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exponential distribution (see Section 12.11). (Note that the output from zelig()

parameterizes scale= 1/α.)

In addition, survival models like the Weibull have three additional properties. The
hazard function h(t) measures the probability of not surviving past time t given survival
up to t. In general, the hazard function is equal to f(t)/S(t) where the survival function
S(t) = 1 −

∫ t

0
f(s)ds represents the fraction still surviving at time t. The cumulative

hazard function H(t) describes the probability of dying before time t. In general,
H(t) =

∫ t

0
h(s)ds = − logS(t). In the case of the Weibull model,

h(t) =
α

λα
i

tα−1

S(t) = exp

{
−
(
t

λi

)α}
H(t) =

(
t

λi

)α

For the Weibull model, the hazard function h(t) can increase or decrease monotonically
over time.

� The systematic component λi is modeled as

λi = exp(xiβ),

where xi is the vector of explanatory variables, and β is the vector of coefficients.

Quantities of Interest

� The expected values (qi$ev) for the Weibull model are simulations of the expected
duration:

E(Y ) = λi Γ(1 + α−1),

given draws of β and α from their sampling distributions.

� The predicted value (qi$pr) is drawn from a distribution defined by (λi, α).

� The first difference (qi$fd) in expected value is

FD = E(Y | x1)− E(Y | x).

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,
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where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. When Yi(ti = 1) is censored rather than observed, we replace it
with a simulation from the model given available knowledge of the censoring process.
Variation in the simulations are due to uncertainty in simulating E[Yi(ti = 0)], the
counterfactual expected value of Yi for observations in the treatment group, under
the assumption that everything stays the same except that the treatment indicator is
switched to ti = 0.

� In conditional prediction models, the average predicted treatment effect (att.pr) for
the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control
(ti = 0) groups. When Yi(ti = 1) is censored rather than observed, we replace it with a
simulation from the model given available knowledge of the censoring process. Variation

in the simulations are due to uncertainty in simulating ̂Yi(ti = 0), the counterfactual
predicted value of Yi for observations in the treatment group, under the assumption
that everything stays the same except that the treatment indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "weibull", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by
using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– icoef: parameter estimates for the intercept and “scale” parameter 1/α.

– var: the variance-covariance matrix.

– loglik: a vector containing the log-likelihood for the model and intercept only
(respectively).

– linear.predictors: a vector of the xiβ.

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.
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� Most of this may be conveniently summarized using summary(z.out). From summary(z.out),
you may additionally extract:

– table: the parameter estimates with their associated standard errors, p-values,
and t-statistics.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from a distribution defined by
(λi, α).

– qi$fd: the simulated first differences between the simulated expected values for
x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the weibull Zelig model:

Kosuke Imai, Gary King, and Oliva Lau. 2007. ”weibull: Weibull Regression for
Duration Dependent Variables” in Kosuke Imai, Gary King, and Olivia Lau,
”Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The Weibull model is part of the survival library by Terry Therneau, ported to R by Thomas
Lumley. Advanced users may wish to refer to help(survfit) in the survival library, and
Venables and Ripley (2002). Sample data are from King et al. (1990).
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13.1 tag: Constrain parameter effects across equations

Description

Use tag() to identify parameters and constrain their effects across equations in multiple-
equation models.

Syntax

tag(x, label)

Arguments

� x: the variable to be constrained.

� label: the name that the constrained variable takes.

Output Values

While there is no specific output from tag() itself, parse.formula() uses tag() to iden-
tify parameter constraints across equations, when a model takes more than one systematic
component.

Examples

See Also

� Section 8.1 for an overview of the multiple-equation user-interface.

� Section ?? for more examples of acceptable uses for tag() in formulas.

Contributors

Kosuke Imai, Gary King, Olivia Lau, and Ferdinand Alimadhi.

562



Part IV

Appendices

563



Appendix A

What’s New? What’s Next?

A.1 What’s New: Zelig Release Notes

Releases listed as “stable releases” have been tested against prior versions of Zelig for con-
sistency and accuracy. Testing distributions may contain bugs, but are usually replaced by
stable releases within a few days.

� 3.4-5 (Mar 13, 2009); A bug fixed in plot.ci() (thanks to Ken Benoit)

� 3.4-4 (Mar 4, 2009); weights are incorporated into ologit, oprobit, and negbin mod-
els (thanks to Casey Klofstad)

� 3.4-2 (Feb 10, 2009): Small fixes in the Rd files as required by new check in CRAN

� 3.4-0 (Jan 2, 2009): Bug-fix release for R 2.8.0 Changed the Zelig citation
Fixed zelig() signature to ensure that the formals() work properly and all arguments
remain documented. ”save.data” and ”cite” were not documented (thanks to Micah
Altman)
Fixed some typos in model family names (thanks to Kevin Condon)
Fixed the predicted values in gam.* models
Fixed the plot functions in gam.* models

� 3.4-0 (Oct 27, 2008): Stable release for R 2.8.0. zelig() now takes a ”citation”argument.
If ”citation” is ”true” (default) the model citation is printed in each zelig run
Introduced two new elemetns on the describe.mymodel function: authors and year
Fixed the problems with lme4 package. Note that there is still a problem with simula-
tion step of ”gamma.mixed” model. We are still working on that.
Fixed the bug with ”gam” models (wrong predicted values)
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Fixed the bug with when zelig model name was provided from a variable (reported
from Jeroen)

� 3.3-1 (June 12, 2008): Bug-fix release for R.2.7.0. A bug fix for plot.ci() so that it
works with mixed effects models (thanks to Keith Schnakenberg).

� 3.3-0 (June 03, 2008): Stable release for R.2.7.0. Updated coxph so that it handles
time-varying covariates (contributed by Patrick Lam). A new plot function for survival
models (contributed by John Graves). First version dependencies are as follows:
”MASS” ”7.2-41”
”nlme” ”3.1-87”
”survival” ”2.34”
”coda” ”0.13-1”
”sna” ”1.5”
”boot” ”1.2-31”
”nnet” ”7.2-41”
”zoo” ”1.5-0”
”sandwich” ”2.1-0”
”lme4” ”0.99875-9”
”systemfit” ”1.0-2”
”VGAM” ”0.7-5”
”MCMCpack” ”0.8-2”
”mvtnorm” ”0.8-3”
”gee” ”4.13-13”
”mgcv” ”1.3-29”
”anchors” ”1.9-2”
”survey” ”3.6-13”

� 3.2-1 (April 10, 2008): Bug-fix release for R.2.6.0-2.6.2. Fixed the setx() bug for
multiply imputed data sets. (Thanks to Steve Shewfelt and Keith Schnakenberg.)

� 3.2 (April 3, 2008): Stable release for R 2.6.0-2.6.2. Adding models for survey data
– normal.survey, logit.survey, probit.survey, poisson.survey, gamma.survey.
First version dependencies are as follows:
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survey 3.6-13
MASS 7.2-34
nlme 3.1-86
survival 2.34
boot 1.2-30
nnet 7.2-34
zoo 1.4-0
sandwich 2.0-2
sna 1.4
lme4 0.99875-9
coda 0.12-1
systemfit 0.8-5
VGAM 0.7-4
MCMCpack 0.8-2
mvtnorm 0.8-1
gee 4.13-13
mgcv 1.3-29
anchors 2.0

� 3.1-1 (January 10, 2008): Bug-fix release for R 2.6.0-2.6.1. Fixed bugs, improved the
code and the documentation for mixed effects models. Thanks to Gregor Gorjanc.
Fixed systemfit models due to some API changes in systemfit package. Added some
other models (including *.mixed models) in plot.ci

� 3.1 (November 30, 2007): Stable release for R 2.6.0-2.6.1. Adding many new models
such as aov, chopit, coxph, generalized linear mixed-effects models, and gee models.
Also, several bugs are fixed. First version dependencies are as follows:
MASS 7.2-34
nlme 3.1-86
survival 2.34
boot 1.2-30
nnet 7.2-34
zoo 1.4-0
sandwich 2.0-2
sna 1.4
lme4 0.99875-9
coda 0.12-1
systemfit 0.8-5
VGAM 0.7-4
MCMCpack 0.8-2
mvtnorm 0.8-1
gee 4.13-13
mgcv 1.3-29
anchors 2.0
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� 3.0-1 – 3.0-6: Minor bug fixes. Stable release for R 2.5.0-2.5.1.

� 3.0 (July 20, 2007): Stable release for R 2.5.0-2.5.1. Introducing vignettes for each
model. Improving documentation in the Zelig web site, improving citation style, im-
proving help.zelig() function, adding gam models, social network methods, logit gee
model, adding support for cross-validation procedures and diagnostics tools, etc.

� 2.8-3 (May 29, 2007): Stable release for R 2.4.0-2.5.0. Fixed bugs in help.zelig(),
and summary for multinomial logit, bivariate probit, and bivariate logit with multiple
imputation. (Thanks to Brant Inman and Javier Marquez.) First version dependencies
are as follows:
MASS 7.2-34
boot 1.2-27
VGAM 0.7-1
MCMCpack 0.8-2
mvtnorm 0.7-5
survival 2.31
sandwich 2.0-0
zoo 1.2-1
coda 0.10-7
nnet 7.2-34
sna 1.4

� 2.8-2 (March 3, 2007): Stable release for R 2.4.0-2.4.1. Fixed bug in ARIMA simulation
process.

� 2.8-1 (February 21, 2007): Stable release for R 2.4.0-2.4.1. Made setx() compatible
with ordred factor variables (thanks to Mike Ward and Kirill Kalinin). First order
dependencies as in version 2.8-1.

� 2.8-0 (February 12, 2007): Stable release for R 2.4.0-2.4.1. Released ARIMA models
and network analysis models (least squares and logit) for sociomatrices. First level
dependencies are as follows:
MASS 7.2-31
boot 1.2-27
VGAM 0.7-1
MCMCpack 0.7-4
mvtnorm 0.7-5
survival 2.31
sandwich 2.0-0
zoo 1.2-1
coda 0.10-7
nnet 7.2-31
sna 1.4
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� 2.7-5 (December 25, 2006): Stable release for R 2.4.0-2.4.1. Fixed bug related to
names.default(), summary for multiple imputation methods, and prediction for or-
dinal response models (thanks to Brian Ripley, Chris Lawrence, and Ian Yohai).

� 2.7-4 (November 10, 2006): Stable release for R 2.4.0. Fixed bugs related to R check.

� 2.7-3 (November 9, 2006): Stable release for R 2.4.0. Fixed bugs related to R check.

� 2.7-2 (November 5, 2006): Stable release for R 2.4.0. Temporarily removed arima
models.

� 2.7-1 (November 3, 2006): Stable release for R 2.4.0. Made changes regarding the
S4 classes in VGAM. The arima (arima) model for time series data added by Justin
Grimmer. First level dependencies are as follows:
MASS 7.2-29
boot 1.2-26
VGAM 0.7-1
MCMCpack 0.7-4
mvtnorm 0.7-5
survival 2.29
sandwich 2.0-0
zoo 1.2-1
coda 0.10-7

� 2.6-5 (September 14, 2006): Stable release for R 2.3.0-2.3.1. Fixed bugs in bivariate
logit, bivariate probit, multinomial logit, and model.matrix.multiple (related to changes
in version 2.6-4, but not previous versions, thanks to Chris Lawrence). First level
dependencies are as follows:
MASS 7.2-27.1
boot 1.2-26
VGAM 0.6-9
MCMCpack 0.7-1
mvtnorm 0.7-2
survival 2.28
sandwich 1.1-1
zoo 1.0-6
coda 0.10-5

� 2.6-4 (September 8, 2006): Stable release for R 2.3.0-2.3.1. Fixed bugs in setx(),
and bugs related to multiple and the multinomial logit model. Added instructions
for installing Fortran tools for Intel macs. Added the R×C ecological inference model.
(thanks to Kurt Hornik, Luke Keele, Joerg Mueller-Scheessel, and B. Dan Wood)

� 2.6-3 (June 19, 2006): Stable release for R 2.0.0-2.3.1. Fixed bug in vdc interface
functions, and parse.formula(). (thanks to Micah Altman, Christopher N. Lawrence,
and Eric Kostello)
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� 2.6-2 (June 7, 2006): Stable release for R 2.0.0-2.3.1. Removed R × C ei. Changed
data = list() to data = mi() for multiply-imputed data frames. First level version
compatibilities are as for version 2.6-1.

� 2.6-1 (April 29, 2006): Stable release for R 2.0.0-2.2.1. Fixed major bug in ordinal
logit and ordinal probit expected value simulation procedure (does not affect Bayesian
ordinal probit). (reported by Ian Yohai) Added the following ecological inference ei
models: Bayesian hierarchical ei, Bayesian dynamic ei, and R × C ei. First level
version compatibilities (at time of release) are as follows:
MASS 7.2-24
boot 1.2-24
VGAM 0.6-8
MCMCpack 0.7-1
mvtnorm 0.7-2
survival 2.24
sandwich 1.1-1
zoo 1.0-6
coda 0.10-5

� 2.5-4 (March 16, 2006): Stable release for R 2.0.0-2.2.1. Fixed bug related to windows
build. First-level dependencies are the same as in version 2.5-1.

� 2.5-3 (March 9, 2006): Stable release for R 2.0.0-2.2.1. Fixed bugs related to VDC
GUI. First level dependencies are the same as in version 2.5-1.

� 2.5-2 (February 3, 2006): Stable release for R 2.0.0-2.2.1. Fixed bugs related to VDC
GUI. First level dependencies are the same as in version 2.5-1.

� 2.5-1 (January 31, 2006): Stable release for R 2.0.0-2.2.1. Added methods for multiple
equation models. Added tobit regression. Fixed bugs related to robust estimation and
upgrade of sandwich and zoo packages. Revised setx() to use environments. Added
current.packages() to retrieve version of packages upon which Zelig depends. First
level version compatibilities (at time of release) are as follows:
MASS 7.2-24
boot 1.2-24
VGAM 0.6-7
mvtnorm 0.7-2
survival 2.20
sandwich 1.1-0
zoo 1.0-4
MCMCpack 0.6-6
coda 0.10-3

� 2.4-7 (December 10, 2005): Stable release for R 2.0.0-2.2.2. Fixed the environment of
eval() called within setx.default() (thanks to Micah Altman).
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� 2.4-6 (October 27, 2005): Stable release for R 2.0.0-2.2.2. Fixed bug related to simu-
lation for Bayesian Normal regression.

� 2.4-5 (October 18, 2005): Stable release for R 2.0.0-2.2.0. Fixed installation instruc-
tions.

� 2.4-4 (September 29, 2005): Stable release for R 2.0.0-2.2.0. Fixed help.zelig()

links.

� 2.4-3 (September 29, 2005): Stable release for R 2.0.0-2.2.0. Revised matchit() doc-
umentation.

� 2.4-2 (August 30, 2005): Stable release for R 2.0.0-2.1.1. Fixed bug in setx() related
to as.factor() and I(). Streamlined qi.survreg().

� 2.4-1 (August 15, 2005): Stable release for R 2.0.0-2.1.1. Added the following Bayesian
models: factor analysis, mixed factor analysis, ordinal factor analysis, unidimensional
item response theory, k-dimensional item response theory, logit, multinomial logit,
normal, ordinal probit, Poisson, and tobit. Also fixed minor bug in formula (long
variable names coerced to list).

� 2.3-2 (August 5, 2005): Stable release for R 2.0.0-2.1.1. Fixed bug in simulation
procedure for lognormal model.

� 2.3-1 (August 4, 2005): Stable release for R 2.0.0-2.1.1. Fixed documentation errors
related to model parameterization and code bugs related to first differences and condi-
tional prediction for exponential, lognormal, and Weibull models. (reported by Alison
Post)

� 2.2-4 (July 30, 2005): Stable release for R 2.0.0-2.1.1. Revised relogit, adding option
for weighting in addition to prior correction. (reported by Martin Plöderl)

� 2.2-3 (July 24, 2005): Stable release for R 2.0.0-2.1.1. Fixed bug associated with
robust standard errors for negative binomial.

� 2.2-2 (July 13, 2005): Stable release for R 2.0.0-2.1.1. Fixed bug in setx(). (reported
by Ying Lu)

� 2.2-1 (July 11, 2005): Stable release for R 2.0.0-2.1.0. Revised ordinal probit to use
MASS library. Added robust standard errors for the following regression models: expo-
nential, gamma, logit, lognormal, least squares, negative binomial, normal (Gaussian),
poisson, probit, and weibull.

� 2.1-4 (May 22, 2005): Stable release for R 1.9.1-2.1.0. Revised help.zelig() to deal
with CRAN build of Windows version. Added recode of slots to lists in NAMESPACE.
Revised install.R script to deal with changes to install.packages(). (reported by
Dan Powers and Ying Lu)
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� 2.1-3 (May 9, 2005): Stable release for R 1.9.1-2.1.0. Revised param.lm() function to
work with bootstrap simulation. (reported by Jens Hainmueller)

� 2.1-2 (April 14, 2005): Stable release for R 1.9.1-2.1.0. Revised summary.zelig().

� 2.1-1 (April 7, 2005): Stable release for R 1.9.1-2.1.0. Fixed bugs in NAMESPACE
and summary.vglm().

� 2.0-14 (April 5, 2005): Stable release for R 1.9.1-2.0.1. Added summary.vglm() to
ensure the compatibility with VGAM 0.6-2.

� 2.0-13 (March 11, 2005): Stable release for R 1.9.1-2.0.1. Fixed bugs in NAMESPACE

and R-help file for rocplot().

� 2.0-12 (February 20, 2005): Stable release for R 1.9.1-2.0.1. Added plot = TRUE

option to rocplot().

� 2.0-11 (January 14, 2005): Stable release for R 1.9.1-2.0.1. Changed class name for
subsettted models from "multiple" to "strata", and modified affected functions.

� 2.0-10 (January 5, 2005): Stable release for R 1.9.1 and R 2.0.0. Fixed bug in ordinal
logit simulation procedure. (reported by Ian Yohai)

� 2.0-9 (October 21, 2004): Stable release for R 1.9.1 and R 2.0.0 (Linux and Windows).
Fixed bug in NAMESPACE file.

� 2.0-8 (October 18, 2004): Stable release for R 1.9.1 and R 2.0.0 (Linux only). Revised
for submission to CRAN.

� 2.0-7 (October 14, 2004): Stable release for R 1.9.1 and R 2.0.0 (Linux only). Fixed
bugs in summary.zelig(), NAMESPACE, and assorted bugs related to new R release.
Revised syntax for multiple equation models.

� 2.0-6 (October 4, 2004): Stable release for R 1.9.1. Fixed problem with NAMESPACE.

� 2.0-5 (September 25, 2004): Stable release for R 1.9.1. Changed installation procedure
to source install.R from Zelig website.

� 2.0-4 (September 22, 2004): Stable release for R 1.9.1. Fixed typo in installation
directions, implemented NAMESPACE, rationalized summary.zelig(), and tweaked
documentation for least squares.

� 2.0-3 (September 1, 2004): Stable release for R 1.9.1. Fixed bug in conditional pre-
diction for survival models.

� 2.0-2 (August 25, 2004): Stable release for R 1.9.1. Removed predicted values from
ls.
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� 2.0-1b (July 16, 2004): Stable release for R 1.9.1. MD5 checksum problem fixed.
Revised plot.zelig() command to be a generic function with methods assigned by
the model. Revised entire architecture to accept multiply imputed data sets with
strata. Added functions to simplify adding models. Completely restructured reference
manual. Fixed bugs related to conditional prediction in setx and summarizing strata
in summary.zelig.

� 1.1-2 (June 24, 2004): Stable release for R 1.9.1 (MD5 checksum problem not fixed,
but does not seem to cause problems). Fixed bug in help.zelig(). (reported by
Michael L. Levitan)

� 1.1-1 (June 14, 2004): Stable release for R 1.9.0. Revised zelig() procedure to
use zelig2model() wrappers, revised help.zelig() to use a data file with extension
.url.tab, and revised setx() procedure to take a list of fn to apply to variables, and
such that fn = NULL returns the entire model.matrix().

� 1.0-8 (May 27, 2004): Stable release for R 1.9.0. Fixed bug in simulation procedure
for survival models. (reported by Elizabeth Stuart)

� 1.0-7 (May 26, 2004): Stable release for R 1.9.0. Fixed bug in relogit simulation
procedure. (reported by Tom Vanwellingham)

� 1.0-6 (May 11, 2004): Stable release for R 1.9.0. Fixed bug in setx.default, which
had previously failed to ignore extraneous variables in data frame. (reported by Steve
Purpura)

� 1.0-5 (May 7, 2004): Replaced relogit procedure with memory-efficient version. (re-
ported by Tom Vanwellingham)

� 1.0-4 (April 19, 2004): Stable release for R 1.9.0. Added vcov.lm method; changed
print for summary.relogit.

� 1.0-2 (April 16, 2004): Testing distribution for R 1.9.0.

� 1.0-1 (March, 23, 2004): Stable release for R 1.8.1.

A.2 What’s Next?

We have several plans for expanding and improving Zelig. Major changes slated for Version
3.0 (and beyond) include:

� Hierarchical and multi-level models

� Ecological inference models

� GEE models
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� Neural network models

� Average treatment effects for everyone (treated and control units)

� Time-series cross-sectional models (via nlme)

� Generalized boosted regression model (via gbm)

� Saving random seeds to ensure exact replication

If you have suggestions, or packages that you would like to contribute to Zelig, please
email our listserv at zelig@lists.gking.harvard.edu.
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Appendix B

Frequently Asked Questions

B.1 For All Zelig Users

How do I cite Zelig?

We would appreciate if you would cite Zelig as:

Imai, Kosuke, Gary King and Olivia Lau. 2006. “Zelig: Everyone’s Statistical
Software,” http://GKing.Harvard.Edu/zelig.

Please also cite the contributors for the models or methods you are using. These citations
can be found in the contributors section of each model or command page.

Why can’t I install Zelig?

You must be connected to the internet to install packages from web depositories. In addition,
there are a few platform-specific reasons why you may have installation problems:

� On Windows: If you are using the very latest version of R, you may not be able to
install Zelig until we update Zelig to work on the latest release of R. If you wish to
install Zelig in the interim, check the Zelig release notes (Section A.1) and download
the appropriate version of R to work with the last release of Zelig. You may have to
manually download and install Zelig.

� On Mac: If the latest version of Zelig is not yet available at CRAN but you would
like to install it on your Mac, try typing the following at your R prompt:

install.packages("Zelig", repos = "http://gking.harvard.edu", type = "source")

� On Mac or Linux systems: If you get the following warning message at the end of
your installation:

Installation of package VGAM had non-zero exit status in ...
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this means that you were not able to install VGAM properly. Make sure that you have
the g77 Fortran compiler. For PowerPC Macs, download g77 from http://hpc.sourceforge.net).
For Intel Macs, download the xcode Apple developer tools. After installation, try to
install Zelig again.

Why can’t I install R?

If you have problems installing R (rather than Zelig), you should check the R FAQs for your
platform. If you still have problems, you can search the archives for the R help mailing list,
or email the list directly at r-help@stat.math.ethz.ch.

Why can’t I load data?

When you start R, you need to specify your working directory. In linux R, this is done
pretty much automatically when you start R, whether within ESS or in a terminal window.
In Windows R, you may wish to specify a working directory so that you may load data
without typing in long directory paths to your data files, and it is important to remember
that Windows R uses the Linux directory delimiter. That is, if you right click and select
the “Properties” link on a Windows file, the slashes are backslashes (\), but Windows R
uses forward slashes (/) in directory paths. Thus, the Windows link may be C:\Program
Files\R\R-2.5.1\, but you would type C:/Program Files/R/R-2.5.1/ in Windows R.

When you start R in Windows, the working directory is by default the directory in which
the R executible is located.

# Print your current working directory.

> getwd()

# To read data not located in your working directory.

> data <- read.table("C:/Program Files/R/newwork/mydata.tab")

# To change your working directory.

> setwd("C:/Program Files/R/newwork")

# Reading data in your working directory.

> data <- read.data("mydata.tab")

Once you have set the working directory, you no longer need to type the entire directory
path.

Where can I find old versions of Zelig?

For some replications, you may require older versions of Zelig.

� Windows users may find old binaries at http://gking.harvard.edu/bin/windows/
contrib/ and selecting the appropriate version of R.
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� Linux and MacOSX users may find source files at http://gking.harvard.edu/src/
contrib/

If you want an older version of Zelig because you are using an older version of R, we strongly
suggest that you update R and install the latest version of Zelig.

Some Zelig functions don’t work for me!

If this is a new phenomenon, there may be functions in your namespace that are overwriting
Zelig functions. In particular, if you have a function called zelig, setx, or sim in your
workspace, the corresponding functions in Zelig will not work. Rather than deleting things
that you need, R will tell you the following when you load the Zelig library:

Attaching package: 'Zelig'

The following object(s) are masked _by_ .GlobalEnv :

sim

In this case, simply rename your sim function to something else and load Zelig again:

> mysim <- sim

> detach(package:Zelig)

> library(Zelig)

Who can I ask for help? How do I report bugs?

If you find a bug, or cannot figure something out, please follow these steps: (1) Reread the
relevant section of the documentation. (2) Update Zelig if you don’t have the current version.
(3) Rerun the same code and see if the bug has been fixed. (4) Check our list of frequently
asked questions. (5) Search or browse messages to find a discussion of your issue on the zelig
listserv.

If none of these work, then if you haven’t already, please (6) subscribe to the Zelig listserv
and (7) send your question to the listserv at zelig@lists.gking.harvard.edu. Please
explain exactly what you did and include the full error message, including the traceback().
You should get an answer from the developers or another user in short order.

How do I increase the memory for R?

Windows users may get the error that R has run out of memory.
If you have R already installed and subsequently install more RAM, you may have to

reinstall R in order to take advantage of the additional capacity.
You may also set the amount of available memory manually. Close R, then right-click

on your R program icon (the icon on your desktop or in your programs directory). Select
“Properties”, and then select the “Shortcut” tab. Look for the “Target” field and after the
closing quotes around the location of the R executible, add
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--max-mem-size=500M

as shown in the figure below. You may increase this value up to 2GB or the maximum
amount of physical RAM you have installed.

If you get the error that R cannot allocate a vector of length x, close out of R and add
the following line to the “Target” field:

--max-vsize=500M

or as appropriate.
You can always check to see how much memory R has available by typing at the R prompt

> round(memory.limit()/2^20, 2)

which gives you the amount of available memory in MB.
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Why doesn’t the pdf print properly?

Zelig uses several special LATEX environments. If the pdf looks right on the screen, there are
two possible reasons why it’s not printing properly:

� Adobe Acrobat isn’t cleaning up the document. Updating to Acrobat Reader 6.0.1 or
higher should solve this problem.

� Your printer doesn’t support PostScript Type 3 fonts. Updating your print driver
should take care of this problem.

R is neat. How can I find out more?

R is a collective project with contributors from all over the world. Their website (http://www.r-project.org)
has more information on the R project, R packages, conferences, and other learning material.

In addition, there are several canonical references which you may wish to peruse:

Venables, W.N. and B.D. Ripley. 2002. Modern Applied Statistics with S. 4th
Ed. Springer-Verlag.

Venables, W.N. and B.D. Ripley. 2000. S Programming. Springer-Verlag.

B.2 For Zelig Contributors

Where can I find the source code for Zelig?

Zelig is distributed under the GNU General Public License, Version 2. After installation, the
source code is located in your R library directory. For Linux users who have followed our
installation example, this is ~/.R/library/Zelig/. For Windows users under R 2.5.1, this
is by default C:\Program Files\R\R-2.5.1\library\Zelig\. For Macintosh users, this is
~/Library/R/library/Zelig/.

In addition, you may download the latest Zelig source code as a tarball’ed directory from
http://gking.harvard.edu/src/contrib/. (This makes it easier to distinguish functions
which are run together during installation.)

How can I make my R programs run faster?

Unlike most commercial statistics programs which rely on precompiled and pre-packaged
routines, R allows users to program functions and run them in the same environment. If
you notice a perceptible lag when running your R code, you may improve the performance
of your programs by taking the following steps:

� Reduce the number of loops. If it is absolutely necessary to run loops in loops, the
inside loop should have the most number of cycles because it runs faster than the
outside loop. Frequently, you can eliminate loops by using vectors rather than scalars.
Most R functions deal with vectors in an efficient and mathematically intuitive manner.
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� Do away with loops altogether. You can vectorize functions using the apply, mapply(),
sapply(), lapply(), and replicate() functions. If you specify the function passed
to the above *apply() functions properly, the R consensus is that they should run
significantly faster than loops in general.

� You can compile your code using C or Fortran. R is not compiled, but can use bits
of precompiled code in C or Fortran, and calls that code seamlessly from within R
wrapper functions (which pass input from the R function to the C code and back to
R). Thus, almost every regression package includes C or Fortran algorithms, which are
locally compiled in the case of Linux systems or precompiled in the case of Windows
distributions. The recommended Linux compilers are gcc for C and g77 for Fortran,
so you should make sure that your code is compatible with those standards to achieve
the widest possible distribution.

Which compilers can I use with R and Zelig?

In general, the C or Fortran algorithms in your package should compile for any platform.
While Windows R packages are distributed as compiled binaries, Linux R compiles packages
locally during installation. Thus, to ensure the widest possible audience for your package,
you should make sure that your code will compile on gcc (for C and C++), or on g77 (for
Fortran).
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